
41

On Private Peering Agreements between Content and
Access Providers: A Contractual Equilibrium Analysis

XIN WANG and RICHARD T. B. MA, National University of Singapore, Singapore

Driven by the rapid growth of content traffic and the demand for service quality, Internet content providers

(CPs) have started to bypass transit providers and connect with access providers directly via private peering

agreements. This peering relationship often raises disputes, e.g., Netflix vs. Comcast, and is not well understood.

In this paper, we build a peering contract model and propose the concept of contractual equilibrium, based

on which we study the formation and evolution of peering contracts. By using market data, we emulate the

strategic peering behavior of providers and shed light on the understanding of private peering agreements.

We reveal that the superiority andmarket dominance of providers primarily determine their peering strategies.

We show that 1) superior providers tend to engage in peering more aggressively, and 2) non-dominant CPs’

optimal peering strategies are negatively correlated due to market cannibalism, while the dominant CP often

behaves oppositely. Our findings help explain phenomena such as why Netflix and Comcast signed the first

peering contract, and reason whether private peering contracts will strengthen in future.
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1 INTRODUCTION
Today’s Internet is dominated by content traffic, especially video streaming. According to Sandvine

2018 Internet Phenomena Report [65], video is almost 58% of the total downstream Internet

traffic, while Netflix solely contributes 15% of the downstream traffic across the entire Internet.

To accommodate the increasing traffic demand from users, large content providers (CPs) have

been deploying wide-area infrastructures so as to bring content closer to users and bypass transit

providers on many paths [29]. For example, Netflix uses third-party content delivery networks,

e.g., Akamai and Limelight, and builds its own [57]. This causes the flattening phenomenon [20, 29]

of the Internet topology, which transitioned from a transit hierarchy to a peering mesh.

However, regardless how flat the Internet could be, end-users still rely on the last-mile access

providers (APs) for accessing the Internet. Thus, the limited capacity of APs may constrain users’

download speed due to network congestion. For example, the average throughput of Netflix users

behind Comcast, the largest U.S. broadband provider, degraded 25% from over 2 Mbps in Oct 2013

to 1.5 Mbps in Jan 2014 [58]. Only after Netflix purchased a direct connection from Comcast to

its network via a private peering agreement in Feb 2014 [76], did the average user throughput
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Fig. 1. Two-sided market with private peering.

rebounded almost doubly. Due to similar reasons, Netflix also signed another peering contract with

Verizon two months later [31].

As a content service market, the entire Internet can be regarded as a two-sided platform illustrated

in Figure 1, where CPs andAPsmay establish private peering agreements that affect the performance

of content applications. Although from a service perspective, this peering relationship seems to be

a collaborative effort between CPs and APs to improve service quality, the actual implementation

is driven by the autonomous objectives and decisions of the contracting entities. In contrast to the

traditional customer-provider relationship under which APs pay upstream entities transit fees, this

type of peering often involves an AP imposing termination fees on a counterparty that specializes

in content distribution and therefore, often causes peering disputes, e.g., Netflix-Comcast and

Netflix-Verizon [48], in the bargaining process of contract negotiation. In the Netflix-Comcast

dispute, for example, Netflix claimed that congestion was made intentionally by Comcast to force

it to pay for direct connectivity; while Comcast claimed that Netflix was sending more traffic

to transit providers than what they could accommodate and caused congestion. These peering

disputes also raise policy concerns such as net neutrality [75], and therefore, the U.S. Federal

Communication Commission (FCC) has requested the peering agreements Netflix signed with

Comcast and Verizon [48] for investigations.

Nevertheless, private peering is not well understood and has not been explored much in the

research community, partially due to the lack of public data sources of peering agreements, which

are often confidential business contracts. The difficulty also lies in the fact that any CP’s peering

decision is driven by the competition in the content market, as well as the bilateral bargaining

with an AP, during which financial transfers are involved and potential disputes could happen.

Ultimately, any bilateral contract depends on not only the two trading parties but also all other

possible contracts engaged by other pairs of providers in the entire service market.

In this paper, we build an analytical peering contract model (Sections 2 and 3) and propose the

concept of contractual equilibrium (Definition 2.3), based on which we study the formation and

evolution (Sections 4 and 5) of peering contracts. In particular, by using market data as inputs

to the contract model, we emulate the strategic peering behavior of providers and try to answer

the following questions: What kind of CP-AP pairs has strong incentives to sign the first peering

contract? (Section 4.1) What is the best-response strategy of a peering pair if others sign peering

contracts? (Section 4.2) How does a contractual equilibrium look like? (Section 4.3) How should a

CP adapt its contracts with varying characteristics of itself and others? (Section 5.1) How does the

contractual equilibrium evolve when conditions of market environment change? (Section 5.2)
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We reveal that the superiority and market dominance (Definitions 3.2 and 3.3) of providers play

key roles in determining their optimal peering strategies. The former is defined by two intrinsic

properties of providers, while the latter is determined by whether a CP obtains more than half of

the entire user market. Some of our major findings are as follows.

(1) A CP-AP pair is more likely to sign the first peering contract if they are superior to their

competitors. In general, superior providers also tend to maintain contracts at high levels and

obtain high market shares.

(2) As the market penetration and quality requirements increase for the Internet content, non-

dominant CPs will strengthen their peering contracts, while a CP will behave oppositely

after it dominates the market.

(3) In response to enhanced peering relationship between other providers, non-dominant CPs

will weaken their peering contracts due to market cannibalism. However, a dominant CP

will behave oppositely.

(4) As a CP becomes superior and dominant, most peering contracts, even its own, will weaken.

Our findings shed light upon the understanding of private peering agreements between content

and access providers.

2 CONTRACT MODEL & EQUILIBRIUM
We consider an Internet content market such as online video streaming. It consists of a setM of

content providers (CPs) which compete with each other for end-users. To provide content to users,

CPs need to deliver content data via the access providers (APs) that users subscribe to. We denote

the set of the APs by N . As APs deliver data traffic from CPs to users, CPs and APs may wish

to establish private peering through which users can obtain better service quality. In our model,

private peering refers to that APs improve the data delivery quality of CPs for a fee. Our model

does not restrict the type of resources used by the AP to improve the quality, for example, the AP

could deploy memory storage to cache data for the CP or dedicate bandwidth resources to build a

direct connection with the CP like Netflix-Comcast [76]. We denote the set of CP-AP pairs that

could potentially establish private peering and jointly serve end-users by L =M ×N .

As a key to understanding the private peering between CPs and APs lies in the contracts they

sign, we model the contract terms of a CP-AP pair l ∈ L by a tuple (ϕl ,ψl ) of contractual level
and monetary transfer, respectively. Because CP-AP peering often involves a CP paying an AP

for the improvement of data delivery quality, where the AP needs to dedicate resources such as

bandwidth and cache, the contractual level ϕl models the amount of resource the AP deploys under

the contract and reflects the data delivery quality provided by the AP. The monetary transferψl
denotes the corresponding contractual payment from the CP to the AP. We normalize ϕl ∈ [0, 1]
without loss of generality. ϕl = 1 models a contract under which abundant resources are deployed

to establish a best-quality private peering, for example, abundant bandwidths are deployed to build

a congestion-free interconnection between the AP and the CP or abundant caches are used to

ensure a 100% of cache hit ratio of the CP’s content. ϕl = 0 models the case that no peering contract

is signed. We define ϕ = (ϕl : l ∈ L) and ψ = (ψl : l ∈ L) to be the vectors of all contractual

levels and transfers. We denote the entire contract profile by (ϕ,ψ) and the profile except pair l ’s
contract by (ϕ−l ,ψ−l ).
Because any contractual level ϕl affects the service quality for users who choose the pair l of

providers, it influences the choices of users among alternative providers and therefore affects the

market share and profits of providers. Nonetheless, as profit-seeking business entities, CPs and

APs negotiate the terms of peering contract via a bargaining process driven by their individual

profits. We denote the profits of any CPm ∈ M and AP n ∈ N by Pm (ϕ,ψ) and Qn (ϕ,ψ), which
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are functions of the entire contract profile (ϕ,ψ), because a provider’s profit may depend on not

only the contracts it signs but also the contracts other providers have reached. In particular, we

define the profits of any CPm and AP n by

Pm (ϕ,ψ) ≜ Um (ϕ) −
∑

k ∈Lm
ψk ; Qn (ϕ,ψ) ≜

∑
k ∈Ln

ψk −Vn (ϕ), (1)

where Lm ≜ {m} × N and Ln ≜M × {n} define the set of CP-AP pairs involving CPm and AP n,
respectively, and Um (ϕ) and Vn (ϕ) denote the CP’s revenue and AP’s cost, respectively. Here, the

profit of a CP is defined as its revenue (from users and/or advertisers) minus the payments to APs,

while the profit of an AP is defined as its received payments from CPs minus its cost for fulfilling

the peering contracts
1
. Because both the CP’s revenue and AP’s peering cost are not affected by the

payments among CPs and APs,Um (ϕ) and Vn (ϕ) are merely functions of the contractual levels ϕ.
To understand what peering contracts would be signed between CPs and APs, we first define an

optimal contract that is ideally desirable for a pair of CP and AP to reach.

Definition 2.1 (Optimal Contract). For any l = (m,n) ∈ L, given the contract profile (ϕ−l ,ψ−l ) of
all other CP-AP pairs, the contract (ϕl ,ψl ) is optimal if two conditions are satisfied:

1) [Profit Maximization] the contractual level ϕl maximizes the aggregate profit of CPm and AP n,

i.e., for any ϕ̄l ∈ [0, 1],

Pm (ϕ,ψ) +Qn (ϕ,ψ) ≥ Pm (ϕ̄l ,ϕ−l ,ψ) +Qn (ϕ̄l ,ϕ−l ,ψ);

2) [Fair Profit Sharing] the contractual transferψl grants equal profit gains to CPm and AP n, i.e.,

Pm (ϕ,ψ) − Pm (0,ϕ−l , 0,ψ−l ) = Qn (ϕ,ψ) −Qn (0,ϕ−l , 0,ψ−l ).

Definition 2.1 states that an optimal contract between a CP-AP pair is defined based on two

axiomatic conditions imposed on the level ϕl and transfer ψl of contract, respectively. The first
condition requires that the contractual level ϕl maximizes the aggregate profit Pm + Qn , which

does not depend on the internal transfer ψl . This condition is desirable for an optimal contract

since it guarantees that the contract outcome is Pareto optimal for the CP-AP pair, i.e., there does

not exist another contractual level under which one provider’s profit can be increased without

reducing that of the other. Because bargaining will lead to a Pareto efficient outcome as stated by

Coase Theorem [13], the most probably signed contract should induce such an efficient outcome.

The second condition requires that the contractual paymentψl equalizes the profit gain, i.e., the
difference in profit derived from signing a contract at level ϕl , for both providers. This condition is

desirable since it guarantees the fairness, in the sense of both Egalitarian bargaining solution [42]

and the Shapley value [67], between the CP and AP. Furthermore, such a fair payment has also

been shown to be the solution of strategic bilateral bargaining of alternating offers [7, 64], which

demonstrates the practicality and stability of the solution. In summary, the optimal contract of a

CP-AP pair is a stable bargaining solution between the CP and the AP. In other words, a CP-AP pair

does not have incentives to change its contract term, e.g., contractual level or monetary transfer,

under the optimal contract.

As the domain of contractual level, i.e., [0, 1], is compact, the existence of an optimal contract is

trivial. Next, we provide the condition for the uniqueness of an optimal contract and characterize

the optimal contractual level and transfer in terms of the revenueUm (ϕ) of CP and costVn (ϕ) of AP.

1
Although an AP’s actual profit also include its revenue from residential users of Internet access, for the purpose of analyzing

peering contracts, we focus on the components of profit that influence an AP’s peering decisions.
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Theorem 2.2 (Characterization of Optimal Contract). For any CP-AP pair l = (m,n) ∈ L,
ifWl (ϕ) ≜ Um (ϕ) −Vn (ϕ) is strictly concave in the contractual level ϕl , there always exists a unique
optimal contract (ϕ∗l ,ψ

∗
l ) that satisfies

ϕ∗l = arg maxϕ̄l ∈[0,1]
{
Um (ϕ̄l ;ϕ−l ) −Vn (ϕ̄l ;ϕ−l )

}
and

ψ ∗l =
1
2

[
Um (ϕ∗l ,ϕ−l )−Um (0,ϕ−l )+Vn (ϕ

∗
l ,ϕ−l )−Vn (0,ϕ−l )

]
.

Theorem 2.2 shows that the uniqueness of optimal contract can be guaranteed by the concavity

of the utilityWl , defined as the revenue of CPm minus the cost of AP n. This concavity can be

justified by the concavity of CP’s revenue Um due to diminishing returns and the convexity of

AP’s cost Vn due to increasing marginal costs. It further characterizes that 1) the optimal level

ϕ∗l that maximizes providers’ total profits Pm +Qn needs to be the one that maximizes the utility

Wl = Um −Vn , and 2) the optimal transferψ ∗l that equalizes changes in profits needs to be half of

the sum of changes in CP’s revenueUm and AP’s cost Vn after the peering contract is fulfilled at

level ϕ∗l . The latter characterization could be understood intuitively since the CP needs to share

half of its additional revenue and half of the incurred cost at the AP, which is aligned with previous

work [16, 32, 77] that use Nash Bargaining solution to specify fair payment transfers.

Based on our characterization of an optimal contract, we define the concept of contractual
equilibrium that specifies what contract profile will be formed between all CP-AP pairs.

Definition 2.3 (Contractual Equilibrium). A contract profile (ϕ,ψ) is a contractual equilibrium if

for any CP-AP pair l ∈ L, (ϕl ,ψl ) is an optimal contract given the contracts (ϕ−l ,ψ−l ) of others.

Definition 2.3 embodies the essence of a Nash equilibrium. Instead of characterizing the strategy

profile of players in the context of a pure non-cooperative game, contractual equilibrium char-

acterizes the profile (ϕ,ψ) of bilateral contracts. Similar to the Nash equilibrium, a contractual

equilibrium is defined for any bilateral contract (ϕl ,ψl ), which specifies the conditions under

which the parties l = (m,n) reach to their optimal contract and thus will not have incentives to

“unilaterally” change the contract. This ensures the stability of contracts specified under equilibrium.

Notice that Definition 2.3 is defined for any single contract and does not make any assumption or

restriction on whether multiple contracts of different CP-AP pairs can be changed simultaneously.

In reality, as each CP’s strategy includes the set of contracts with all the APs, each CP might want

to simultaneously change multiple contracts. If characterizing a CP’s strategy that is resistant to

group deviation rather than unilateral deviation in terms of peering contract, the first condition

in Definition 2.1 needs to be strengthened to allow simultaneous changes of multiple contractual

levels for any CP. We call such a strategy profile an equilibrium under group deviation. Because
an equilibrium under group deviation must satisfy a stronger version of the first condition in

Definition 2.1, it must satisfy all the conditions for a contractual equilibrium. Although a contractual

equilibrium might be of a less stable solution, it is a necessary condition of being an equilibrium

and is more tractable. In particular, we will characterize the existence and uniqueness of contractual

equilibrium and study its comparative statics. Nevertheless, since an equilibrium under group

deviation is also a contractual equilibrium, its comparative statics and the corresponding insights

should be aligned with what holds for contractual equilibrium.

Besides, due to the axiomatic conditions imposed on an optimal contract for bilateral bargaining

in Definition 2.1, our definition of contractual equilibrium also constitutes a “Nash equilibrium in

Nash bargains” solution, i.e., separate bilateral Nash bargaining problems within a Nash equilibrium

to a game played among all pairs of firms, which is referred to as a “Nash-in-Nash” solution.

Corollary 2.4. If a contract profile (ϕ,ψ) is a contractual equilibrium, it is a Nash-in-Nash
solution, i.e., for any pair l = (m,n) ∈ L, given the contracts of other pairs (ϕ−l ,ψ−l ), the contract
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(ϕl ,ψl ) is a Nash bargaining solution between the CPm and the AP n, i.e., (ϕl ,ψl ) maximizes the
Nash product [Pm (ϕ,ψ)−Pm (0,ϕ−l , 0,ψ−l )] [Qn (ϕ,ψ)−Qn (0,ϕ−l , 0,ψ−l )] subject to the constraints
Pm (ϕ,ψ) ≥ Pm (0,ϕ−l , 0,ψ−l ) and Qn (ϕ,ψ) ≥ Qn (0,ϕ−l , 0,ψ−l ).

“Nash-in-Nash" solution has been widely studied and used in the literature
2
of industrial or-

ganization [8, 14, 22, 37], since it provides easily computable payments for complicated bilateral

oligopoly environments with interdependencies, and it is based on marginal valuations which fits

well with classical price theory [14].

The following result characterizes the existence and uniqueness of contractual equilibrium, again

based on conditions of the utilityWl (ϕ) ≜ Um (ϕ) −Vn (ϕ) of CP-AP pairs.

Theorem 2.5 (Existence and Uniqeness). There always exists at least one contractual equi-
librium, ifWl (ϕ) ≜ Um (ϕ) − Vn (ϕ) is quasi-concave in ϕl for any pair l ∈ L. Furthermore, the
equilibrium is unique, if for any two distinct contractual levels ϕ ′ , ϕ, there exists a pair l such that

(ϕ ′l − ϕl )

[
∂Wl (ϕ

′)

∂ϕ ′l
−
∂Wl (ϕ)

∂ϕl

]
< 0. (2)

Theorem 2.5 shows that the existence of contractual equilibrium is guaranteed under the con-

dition of quasi-concavity on the utilityWl of pairs. The sufficient condition for the uniqueness

of contractual equilibrium requires the negative of marginal utility, i.e., −∂Wl (ϕ)/∂ϕl , to be a

P-function [52].

3 REVENUE, COST AND CHOICE MODEL
In the previous section, we modeled the peering contracts between CPs and APs and formulated the

concepts of optimal contract and contractual equilibrium. Our analysis showed that both solution

concepts are fundamentally determined by CP’s revenueUm (ϕ) and AP’s costVn (ϕ). In this section,

we construct the revenue and cost of providers based on 1) detailed characteristics of the CPs and

APs, and 2) the user choices over the providers impacted by peering contracts.

We denote the total user population that consumes content by X . Based on the CP’s business

model, its revenue can be generated from subscription fees of users, e.g., Netflix, or advertisement

fees generated from user views, e.g., YouTube. We denote the average per-user revenue of CPm
by um . Similarly, as private peering requires APs to invest and deploy resources such as bandwidth

and cache capacities, we denote the resource cost of AP n at the highest contract level by vn , i.e.,
the cost for fulfilling a best-quality private peering. Notice that although the bandwidth cost/price

of paid peering has declined by 20-30% annually in recent years similarly to those of transit

prices [1], the volume of data traffic generated by CPs has increased by 20-30% annually [71] and

many emerging content services, e.g., live streaming and HD online video, are highly sensitive to

delay/throughput. Therefore, the bandwidth of peering needed by CPs to guarantee their service

quality is expected to grow by at least 20-30% per year. Because the price of paid peering is often

charged based on the bandwidth, we expect that total bandwidth cost for peering will not decline

over the next few years. We define the revenue and cost of providers by

Um (ϕ) ≜ um
∑
l ∈Lm

πl (ϕ)X and Vn (ϕ) ≜ vn
∑
l ∈Ln

ϕl , (3)

2
Although the concept of the Nash-in-Nash solution appeared in literature, our work uses different models from them. For

example, [14, 22] and [8, 37] modeled the contract term by a monetary transfer and a tuple of price and quantity of goods,

respectively, while we model the contract term by a tuple of monetary transfer and contractual level of private peering.
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where πl (ϕ) defines the market share of CPm under the peering pair l , which depends on the

contractual levels ϕ of all pairs because users’ choices among pairs are affected by the service

quality influenced by the contract levels ϕ.
To characterize πl (ϕ), we start with an ideal baseline case under which any CPm can be accessed

from any AP n via a best-quality private peering. If users’ choices over CPs are consistent with

respect to the independence of irrelevant alternatives (IIA) property
3
, by Luce’s axiom [47], the

probability of a user choosing CPm should be proportional to a weight associated with CPm. We

denote this weight by αm , and because the user’s choice of AP does not affect the quality of CPs’

services under this ideal scenario, αm captures the intrinsic properties of CPs such as brand name

and content coverage that influence users’ choices over CPs. Besides, users who are interested in

video content may also choose offline alternatives, e.g., DVDs. We conceptually model all these

outside options as a competing content service provided by a CP index by 0 ∈ M. Likewise, we

denote the weight of any AP n by βn , which captures its intrinsic characteristics such as brand and

price. To this end, we can understand that any user will choose CPm and AP n with probabilities

αm/(
∑

i ∈M αi ) and βn/(
∑

j ∈N βj ), which are also the market share of the providers. Furthermore, if

we regard a pair l = (m,n) of CP and AP as a bundle of two complementary services, by extending

Luce’s axiom in a two-dimensional space, we know that each user will choose the pair of providers

with a probability proportional to αmβn . As a result, we can derive the market share πl of any
pair l under the ideal case of ϕ = 1, i.e., all contracts provide best-quality private peering, as

πl (1) = αmβn/(
∑
l=(i, j )∈L αiβj ).

Next, we characterize the general market share πl (ϕ) under any vector ϕ of contractual levels.

Intuitively, when a pair l does not maintain a best-quality private peering, i.e., ϕl < 1, users’
experience will be degraded and therefore, the chance for them to choose the pair of providers will

decrease. We define the pair l = (m,n)’s weight under a contractual level ϕl ∈ [0, 1] by αmβnG (ϕl ),
i.e., the baseline weight αmβn multiplied by a gain factorG (ϕl ) that satisfiesG (1) = 1 and decreases

as ϕl decreases. The monotonicity of G guarantees that the probability of a pair being chosen by

users increases with its contractual level and decreases with that of another pair, which models that

a pair of CP-AP would attract (lose) more users when they (another pair of CP-AP) sign a contract

of a higher level. Given the contractual levels ϕ of all pairs
4
, the expression of the probability that

a user chooses a CP-AP pair l = (m,n) can be generalized as

πl (ϕ) =
αmβnG (ϕl )∑

k=(i, j )∈L αiβjG (ϕk )
. (4)

Corollary 3.1. If the gain function G (·) is strictly concave, 1) there exists a unique contractual
equilibrium and 2) for any l ∈ L, given the contract profile (ϕ−l ,ψ−l ) of all other CP-AP pairs, there
exists a unique optimal contract (ϕ∗l ,ψ

∗
l ).

Corollary 3.1 shows that by a minor concavity assumption on the gain functionG (·), the unique-
ness of optimal contracts and contractual equilibrium can be guaranteed. Figure 2 illustrates a gain

function in the form of G (ϕl ) = 1 − д(1 − ϕl )2 that increases concavely with ϕl , which models the

diminishing return of user preference. The parameter д captures the discount in link l ’s weight
when its quality cannot be guaranteed without any peering contract signed, i.e., ϕl = 0. As shown
by Theorem 2.2 that an optimal contract of a CP-AP pair l ∈ L is a function of ϕ−l , we denote the
optimal contract level and transfer by ϕ∗l (ϕ−l ) and ψ

∗
l (ϕ−l ), respectively. We denote the unique

contractual equilibrium by (ϕ∗,ψ∗).

3
It requires the probability of choosing one over another from a set not to be affected by the presence or absence of other

alternatives in the set.

4
As the quality of the outside options does not rely on any AP, the contract level between CP 0 and any AP equals 1 by

definition.
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Fig. 2. Gain G (ϕl ) = 1 − д(1 − ϕl )2 under varying contract level ϕl with different values of parameter д.

So far, we have completed the descriptions of our model. In summary, each CPm and AP n are

modeled by two intrinsic parameters (αm ,um ) and (βn ,vn ) that are exogenous to the model. Based

on a choice model of users, the peering contracts will determine endogenous variables such as the

market share πl of providers. In the following, we define two key concepts that are related to two

intrinsic properties of the providers and the endogenous market share of them. We will show that

both concepts play key roles in determining what contracts will be signed among CPs and APs.

Definition 3.2 (Binary Superiority Relation Of Providers). For any two CPsm and i , we definem
to be at least as superior as i , denoted bym ≽ i , if and only if αm ≥ αi and um ≥ ui . For any two

APs n and j, we define n to be at least as superior as j, denoted by n ≽ j , if and only if βn ≥ βj and
vn ≤ vj .

Definition 3.3 (Market Dominance). For any CPm ∈ M, we denote its total market share by

πm , defined by πm (ϕ) ≜
∑
l ∈Lm πl (ϕ). We define a CPm to be dominant if its market share is no

smaller than half of the market, i.e., πm ≥ 50%.

Definition 3.2 defines a binary relation between providers that specifies a partial ordering of

them. Intuitively, a superior provider has more incentives to sign contracts. However, this intuition

does not always hold, as we will see that the conclusions may totally change depending on whether

a CP is dominant as specified in Definition 3.3.

4 FORMATION OF PEERING CONTRACTS
Motivated by the emergence of CP-AP peering, in this section, we investigate the strategic behaviors

of the providers and we start with a pragmatic approach that uses market data as inputs to our

model and emulate the peering decisions of the providers. We consider the representative market

structure in Figure 1 that consists of the largest three CPs, i.e., Nexflix, Hulu and Amazon Prime

Video, and two major U.S. broadband APs, i.e., Comcast and Verizon. Because the first of such a

peering contract [76] was signed in Feb 2014, we choose the model parameters based on the 2013

year-end market data as follows. CPs’ weights are set to be (α0,α1,α2,α3) = (24.3, 83.4, 39.5, 28.5)
based on the fact that the Internet content market saturation was 75.7% in 2013 [68] and the CPs’

market share ratio [63] was 38 : 18 : 13. APs’ weights are set to be (β1, β2) = (20.7, 6.1) which
were the numbers (in millions) of their users [12, 73] in 2013. The user population is set to be

X = β1 + β2 = 26.8 millions. Based on the annual revenues and numbers of users of Netflix [56]

and Hulu [38], their per-user revenues are set to be (u1,u2) = (130.76, 63.17) dollars. Because
Amazon Prime Video started to operate independently from 2016 [51], we use the ratio of its

subscription fee and that of Netflix at 2016 and project its per-user revenue as 90% of that of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 41. Publication date: December 2020.



On Private Peering Agreements Between CPs and APs 41:9

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Fig. 3. Dynamics of contract profile (ϕ,ψ) under an iterative process of signing optimal contracts.

Netflix’s, i.e., u3 = 117.67 dollars. Because the peering contracts are confidential, we estimate the

(best-quality) peering costs of APs in the range of 50 to 100 of million dollars per annum and set

(v1,v2) = (75, 75) million. Because users’ average throughput almost doubled after the signing of

the Netflix-Comcast peering [76], we use д = 0.5 for the gain function G (ϕl ) in our evaluations,

assuming that users’ choices over providers are proportional to their throughput.

Under any contract profile (ϕ,ψ), we evaluate the maximum profit growth of any pair l = (m,n),
defined by ∆l (ϕ,ψ) ≜ Pm (ϕ∗l (ϕ−l ),ϕ−l ,ψ

∗
l (ϕ−l ),ψ−l )−Pm (ϕ,ψ)+Qn (ϕ

∗
l (ϕ−l ),ϕ−l ,ψ

∗
l (ϕ−l ),ψ−l )−

Qn (ϕ,ψ), which is achieved under the optimal contract (ϕ∗l (ϕ−l ),ψ
∗
l (ϕ−l )). Since profit growth

reflects the incentives for peering, we emulate an iterative process under which the pair of CP-AP

that has the highest value of ∆l will engage an optimal contract, and we start the process with a

peering profile ϕ = 0 that indicates no CP-AP peering contract was established at the beginning.

Figures 3 plots the contract profiles (ϕ,ψ), where the legend at the top shows the pair l that
engages an optimal contract in each iteration. We observe that after 10 rounds of iterations, the

outcome has converged to the contractual equilibrium, which is shown by the levels of horizontal

lines. In general, the contractual transfers show similar trends as the contractual levels and a

contract of higher level is associated with a higher value of transfer. Intuitively, a contract of

high level implies that despite of high peering costs, the contract will bring higher revenue for

the CP such that both parties are willing to absorb the cost and share high profit growth. In

particular, we also observe that the first peering pair (in iteration 1) is indeed Netflix-Comcast.

Figure 4 plots the corresponding market share πm of CPs and profits Pm and Qn of all providers.

We observe that when an optimal contract increases its level ϕl between a pair l = (m,n) at
any iteration, CPm’s market share πm and profit Pm increase while those of other CPs decrease.

When comparing the market share and profits under the contractual equilibrium with those at the

beginning (iteration 0), we observe that all CPs obtain higher market share (as a result of a lower
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Fig. 4. Dynamics of CPs’ market share πm and providers’ profit Pm and Qn under the iterative process.

π0 due to the increase in overall market penetration), but lower profit (due to market competition

and monetary transfer to APs).

We next study whether the above observations
5
are general and try to reveal 1) what type of CP-

AP pairs have strong incentives to sign the first peering contract when such a peering relationship

does not exist? 2) what are the best peering strategies for any pair of CP-AP, if other providers

start to engage in such peering contracts? and 3) how does a contractual equilibrium look like (or

what are its structural properties?) when contracts are reached in a steady state.

4.1 The First Contract
We first study who have strong incentives to initiate peering when ϕ = 0 and try to understand

why Netflix-Comcast happened to be first movers to engage in peering.

Theorem 4.1. If the providers of a pair l = (m,n) are superior to those of another pair k = (i, j ), i.e.,
m ≽ i andn ≽ j , and CPm is non-dominant after signing an optimal contract, i.e., πm (ϕ∗l (0), 0) < 50%,
the pairs l and k’s optimal contracts satisfy ϕ∗l (0) ≥ ϕ

∗
k (0) and their profit growths satisfy ∆l ≥ ∆k .

Theorem 4.1 shows that the optimal contractual level ϕ∗l is positively correlated to the superiority
of providers who sign the contract. Intuitively, high per-user revenue um and low peering cost vn
generate high profits from peering and therefore motivate providers to contract at high levels. Note

that superiority by its own cannot guarantee the maximum of profit growth, although providers’

weights αm and βn play a role in determining the market share. Theorem 4.1 shows that the

maximum profit growth can be guaranteed if the CP is not dominant because the improved effective

weight αmβnG (ϕ∗l ) can attract enough additional users as its existing market share is not more

than half of the entire market.

5
Although detailed input values change the quantitative results, we find that the qualitative observations that we make

remain the same.
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Since Netflix and Comcast had the largest market share in 2013, their weights α1 and β1 are

the highest among competitors. In addition, as their unit revenue um and cost vn were no worse

than their competitors, they are superior to others by Definition 3.2. Thus, Theorem 4.1 implies

that the Netflix-Comcast pair has the strongest incentive to peer, although Netflix’s market share

exceeds 50% under our emulation because the additional number of users it can attract is still

substantial. The implication of Theorem 4.1 also help us understand that with respect to any AP

(CP), the first peering contract is likely to be signed with the most superior CP (AP). For example,

the most superior CP Netflix is also the first one that signed a contract with Verizon [48] and the

largest AP Comcast is the first AP that Netflix peered with.

4.2 Best Response of Peering Contract
After understanding how the first peering contracts were signed, we continue to study howproviders

will adapt their optimal contracts when other pairs of providers engage in private peering, which

influences the market share, profits, and therefore, the optimal contracts of the providers.

We first consider from a CPm’s perspective and analyze how its optimal contract (ϕ∗l ,ψ
∗
l ) at a

peering link l ∈ Lm
is influenced by its other contracts at peering links k ∈ Lm

.

Theorem 4.2 (Contract Cannibalism). For any CPm ∈ M and one of its contract link l ∈ Lm ,
the optimal contractual level ϕ∗l (ϕ−l ) and transferψ

∗
l (ϕ−l ) are non-increasing in any other contractual

level ϕk of CPm, i.e., k ∈ Lm .

Theorem 4.2 states that a CP’s optimal contractual level with and the corresponding transfer to

an AP is negatively correlated with the contractual level at which it peers with other APs. As a

CPm strengthens its peering l = (m,n) with an AP n, the weight αmβnG (ϕl ) increases, and due to

market cannibalism, its market share component from other peering links will decrease, which

decreases the necessity of maintaining a high contractual level over those links. In economics, the

result of Theorem 4.2 shows that the peering decisions, i.e., contractual levels, of all the links of a

CP are strategic substitutes [10] which mutually offset each other.

Next, we analyze how a CP’s optimal contract (ϕ∗l ,ψ
∗
l ) is influenced by the peering contracts

established by other CPs.

Theorem 4.3. For any CP m ∈ M and its contract link l ∈ Lm , the optimal contractual level
ϕ∗l (ϕ−l ) is non-decreasing in any contractual level ϕk of other CPs, i.e., k < Lm , if CPm is market
dominant, i.e., πm (ϕ∗l (ϕ−l ),ϕ−l ) ≥ 50%; otherwise, ϕ∗l (ϕ−l ) andψ

∗
l (ϕ−l ) are non-increasing in ϕk .

Intuitively, due to market cannibalism, a CP should weaken its peering contracts if the contracts

of other CPs are strengthened. Theorem 4.3 tells that this intuition does not hold when a CP

dominates the market. Because a dominant CP has been chosen by the major of users, its incentive

to strengthen contracts for higher market share is low. However, this incentive will increase

when it loses users due to the competition from other CPs; and therefore, the dominant CP will

behave aggressively to compete for the loss of market share to other CPs. The reversed argument

hold for non-dominant CPs so that they will have even fewer incentives to compete for market

share under competition. Theorem 4.3 also shows that the peering decisions of the links of different

non-dominant CPs are negatively correlated and thus they are strategic substitutes which mutually

offset each other.

Both Theorems 4.2 and 4.3 help understand our observations made from Figure 3. First, the

adjustments of contractual level ϕl and transfer ψl are often in the same direction for optimal

contracts, which explains the similar trends for ϕl andψl in the figure. As a result, we will mainly

focus on the analysis of contractual level ϕl . Second, we can explain the weakening of contracts

after an initial period (iterations 1-5) of contract engagement. For example, Amazon weakens
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its optimal contract (signed at iteration 2) with Comcast (at iteration 6) due to the strengthened
contracts from other CPs (iterations 3, 4) and itself (iteration 5). Another example is that Netflix

weakens its optimal contract (signed at iteration 1) with Comcast (at iteration 7) due to the signed

contracts from other CPs and itself (iteration 4).

4.3 Structure of Contractual Equilibrium
In this subsection, we study the steady-state contracts that are formed under a contractual equilib-

rium (ϕ∗,ψ∗), where each individual contract is optimal and each pair of CP-AP would not have

incentives to modify the contract terms.

Theorem 4.4. If a pair l = (m,n) of providers are superior to those of another pair k = (i, j ), i.e.,
m ≽ i and n ≽ j, we have ϕ∗l ≥ ϕ

∗
k under any contractual equilibrium (ϕ∗,ψ∗).

Aligned with Theorem 4.1, Theorem 4.4 shows that contractual level ϕ∗l under contractual

equilibrium is positively correlated to the superiority of the contracting CP and AP. This explains

the observations in Figure 3 that for any AP, Netflix’s contractual level is higher than other CPs; and

for any CP, the contractual level is higher with Comcast. After reaching a contractual equilibrium,

each pair’s weight increases from αmβnG (0) to αmβnG (ϕ∗l ). Since peering improves service quality,

it will attract users of CP 0 who chose outside options and therefore, the penetration of the entire

Internet content market will increase, shown by the decreasing value of π0 in Figure 4. This result

also implies that the engagement of private peering will enlarge the ratio of market share between

the market leader and follower, because the multiplier G (ϕ∗l ) of weights is monotonic in ϕ∗l . This
explains the observation in Figure 4 that Netflix’s market share π1 under the contractual equilibrium

has increased substantially compared to those of Hulu and Amazon. Although peering is a means

for superior providers with better intrinsic characteristics to enlarge their advantages in terms

of market share, it does not guarantee CPs for higher profit (also seen from Figure 4) due to the

contractual transfers to APs and fiercer market competition introduced by peering.

Theorem 4.4 compares the contracts of providers where the superiority relation applies, e.g., a

CP’s weight αm and per-user revenue um are both better than those of another CP. However, for

Hulu and Amazon, we have α2 > α3, but u2 < u3, and Theorem 4.4 does not specify whether there

is a similar ordering between them, since the superiority relation only provides a partial ordering of

the providers. The next result shows that such a strict ordering does exist as a structural property

of a contractual equilibrium.

Corollary 4.5 (Full Ordering under Eqilibrium). Under a contractual equilibrium, there
exists a full ordering of the CPs: for any two CPsm,m′ ∈ M such that if ϕ∗mn ≥ ϕ

∗
m′n for some n ∈ N ,

ϕ∗mn′ ≥ ϕ
∗
m′n′ holds for all n

′ ∈ N . Similarly, such a full ordering of the APs also exists.

Corollary 4.5 specifies that a strict ordering of the providers exists under a contractual equilibrium.

This implies that when peering with Comcast, if the contractual level of Amazon is higher than that

of Hulu, Amazon is superior to Hulu under the contractual equilibrium such that with any AP, its

contractual level would not be lower than that of Hulu. This is indeed the case shown in Figure 3,

where the most inferior pair of providers, Hulu and Verizon, do not even sign a contract, i.e., ϕ∗22 = 0,
under equilibrium. Notice that this ordering is specific to a contractual equilibrium. When market

conditions change, the contractual equilibrium and the corresponding strict ordering may change.

To conclude this section, we find that the strategic peering behavior of providers and the structural

characteristics of contractual equilibrium primarily depend on 1) the superiority of the providers

and 2) whether a CP is market dominant. Superior providers tend to peer at high contractual

levels and obtain high market shares. In response to the increase of contractual levels by other

pairs of providers, the optimal contractual level of a CP-AP pair often decreases due to market
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Fig. 5. Contractual equilibrium, market shares and Herfindahl index of CP market under varying α1.

cannibalism. However, the only exception happens when the CP dominates the market and will

behave oppositely.

5 EVOLUTION OF PEERING CONTRACTS
In the previous section, we analyzed the strategic peering behaviors of providers using 2013 year-

end market data as model parameters and emulated an iterative process that starts without any

peering contract but leads to a contractual equilibrium. This equilibrium specifies the contractual

levels and transfers that would be engaged between CPs and APs. Because the equilibrium depends

on the exogenous variables of the model, i.e., the intrinsic characteristics (αm ,um ) of CP and (βn ,vn )
of AP, and market environment parameters α0 and д, to understand the current and future peering

contracts, we study the evolution of equilibrium by taking the contractual equilibrium resulted from

the previous iterative process as a starting point in this section. In particular, we will focus on how

peering contracts (ϕ∗,ψ∗) and CPs’ market share πm are influenced by the changing parameters

(αm ,um ) of CPs and (α0,д) of the market environment, because such private peering contracts

primarily impact the development and competition of the content market. We will measure the com-

petitiveness of the CP market using the Herfindahl index [34] defined by

∑M
m=1 (πm )2/(

∑M
m=1 πm )2.

An increase in the Herfindahl index generally indicates a decrease in competition.

5.1 Impact of CPs’ Characteristics
In this subsection, we study how a CP’s weight αm and per-user revenue um influence the con-

tractual equilibrium. As new contents have been produced and only available on Internet-based

platforms, users have become more attracted to certain CPs. For example, Netflix’s market share

has continuously increased from 38% in 2013 [63] to 64.5% in 2016 [69]. This implies that CP’s

weight αm has been increasing over recent years. In Figure 5, we vary the weight of Netflix, i.e., α1,

along with the x-axis and plot the contractual equilibrium and the corresponding market share and

Herfindahl index of the CP market. The initial equilibrium we obtained from the previous section

can be referred to as the point at α1 = 83.4 shown on the x-axis. We observe that as Netflix’s weight

increases, its market share π1 increases, but that of Hulu or Amazon decreases. This leads to a less

competitive CP market whose Herfindahl index increases. We also observe that as α1 increases, the

contractual level and transfer of contracts engaged by Hulu and Amazon always decrease; however,

those of contracts engaged by Netflix show a single peak pattern, better observed from the lower
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Fig. 6. Contractual equilibrium, market shares and Herfindahl index of CP market under varying u1.

04063.1780120
0

0.2

0.4

0.6

0.8

1

04063.1780120
0

50

100

150

200

250

04063.1780120
0

0.1

0.2

0.3

0.4

0.5

0.6

04063.1780120
0.4

0.42

0.44

0.46

0.48

0.5

04063.1780120
0.89

0.891

0.892

04063.1780120
0.629

0.631

0.633

Fig. 7. Contractual equilibrium, market shares and Herfindahl index of CP market under varying u2.

subfigures. In particular, Netflix’s contracts with APs strengthen (weaken) as α1 increases before

(after) it becomes market dominant.

Meanwhile, Netflix will increase its price from $8 to $9 per month in 2019 [53], which implies

that its per-user revenue will increase. In Figure 6, we vary Netflix’s per-user revenue u1 along the

x-axis and plot the same metrics as in Figure 5. The initial equilibrium can be referred to as the

point at u1 = 130.76. We observe that as u1 increases, similar to Figure 5, π1 increases, while π2
and π3 decrease, leading to a less competitive CP market with a higher Herfindahl index. Although

the change in market share is not as substantial as that in Figure 5, the monetary transfer from

Netflix to the APs increases linearly with u1. In contrast to the case in Figure 5, the contractual

level and transfer of contracts engaged by Netflix increase monotonically with its per-user revenue

u1, while those of contracts engaged by Hulu and Amazon decrease mildly with u1.

In contrast to Netflix, Hulu is expected to decrease its price in 2019 from $7.99 to $5.99 per

month [30], which implies that its per-user revenue will decrease. In Figure 7, we vary Hulu’s

per-user revenue u2 along the x-axis and plot the same metrics as before. The initial equilibrium

can be referred to as the point at u2 = 63.17. We observe that as u2 decreases, π2 decreases, while

π1 and π3 increase, again leading to a less competitive CP market with a higher Herfindahl index.

We also observe that as u2 decreases, Amazon’s contracts with APs strengthen mildly, while the

contractual level and transfer of contracts engaged by Hulu drop prominently. If Hulu’s per-user

revenue drops below u2 = 16, it will not sign any contract, and the equilibrium remains afterward.

Similar to the case in Figure 5, we observe that the contractual level and transfer of contracts

engaged by Netflix show a single peak pattern (better observed from the lower subfigures), which

strengthen (weaken) as u2 decreases before (after) it becomes market dominant.
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Fig. 8. Contractual equilibrium, market shares and Herfindahl index of CP market under varying α0.

In summary, given the changes in CPs’ characteristics, we find that the CP market is becoming

less competitive. We foresee that most peering contracts will not strengthen, because even Netflix’s

incentives for peering will decrease after it becomes market dominant and continues to grow in

market share. After making observations and conclusions from the above evaluations, we next

study whether these observations and conclusions hold in general.

Corollary 5.1. If any CPm’s intrinsic parameter αm or um increases, its market share πm under
contractual equilibrium will increase, while that of other CPs will decrease.

Corollary 5.1 confirms our observations on the monotonic changes in market shares. Intu-

itively, it states that if any CP becomes superior, its market share will increase while that of the

others will decrease.

Theorem 5.2. For any non-dominant CPm and its peering link l ∈ Lm , the equilibrium contractual
level ϕ∗l will increase if its intrinsic parameter αm or um increases, and will decrease if any other CP i’s
intrinsic parameter αi or ui increases.

Theorem 5.2 confirms our observations on the peering behavior of a non-dominant CP. It states

that a non-dominant CP will engage in peering more aggressively to obtain market share if it

becomes superior; however, it will weaken their contracts due to market cannibalism, if any of

the other CPs, whether dominant or not, becomes superior. This behavior of non-dominant CPs is

aligned with the off-equilibrium best-response results of Theorems 4.2 and 4.3.

Theorem 5.3. For any dominant CPm and its peering link l ∈ Lm , the equilibrium contractual
level ϕ∗l will increase if its per-user revenueum or any other CP i’s intrinsic parameter αi orui increases,
and will decrease if its weight αm increases.

Theorem 5.3 states the non-intuitive peering behavior of the dominant CP that also confirms

with our observations. Although the CP will still enhance its peering contracts as its per-user

revenue increases, it will behave oppositely as non-dominant CPs otherwise. First, as its weight αm
further increases, because it has already obtained the majority of market share, its incentive to peer

will decrease. Second, as other CPs become more superior and engage in peering more aggressively,

the dominant CP will compete for the loss of market share by enhancing its peering contracts in

response. This particular behavior of the dominant CP is aligned with the off-equilibrium best-

response result of Theorem 4.3. The implication of Theorem 5.2 and 5.3 tell that as Netflix becomes

dominant and superior, most peering contracts, even Netflix’s, will weaken. This helps explain why

peering disputes did not occur recently.
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Fig. 9. Contractual equilibrium, market shares and Herfindahl index of CP market under varying д.

5.2 Impact of Market Environments
After understanding how the contractual equilibrium is influenced by CPs’ characteristics, in this

subsection, we study how it is influenced by the market parameters α0 and д.
As the digital video penetration has been continuously increasing and is projected to reach over

83% by 2020 [68], we foresee that the attractiveness α0 of outside options such as TV and DVDs to

users will decrease. In Figure 8, we vary the weight α0 of the conceptual CP 0 of outside options

along the x-axis and plot the same metrics as before. The initial equilibrium can be referred to

as the point at α0 = 24.3. We observe that as α0 decreases, all real CPs’ market shares increase,

leading to a more competitive CP market with a lower Herfindahl index. Similar to the case in

Figure 7, we observe that although the contractual level and transfer of contracts engaged increase

in general as α0 decreases, Netflix’s contracts weaken after it becomes dominant, resulting in a

faster decline in the Herfindahl index as α0 further decreases.

Theorem 5.4. When the Internet content penetration increases, i.e., α0 decreases, any real CPm’s
market share πm will increase. Furthermore, for any CPm’s peering link l ∈ Lm , ϕ∗l will decrease if
CPm is dominant; otherwise, ϕ∗l will increase.

Theorem 5.4 confirms our observations on the monotonic changes in CPs’ market shares, which

is due to the redistribution of the additional market shares lost by outside options. As the overall

market penetration increases, the total number of users of CPs also increases, resulting in higher

incentives for non-dominant CPs to engage in private peering to attract more users. Nonetheless,

the opposite behavior of the dominant CP is also observed here, i.e., it will weaken its contracts as

its market share exceeds 50%. Combined with Theorem 4.1, this result helps to understand that

the increase in market penetration also contributes to the effect of increasing the weight αm of

CPs, resulting in superior CPs and higher incentives to switch from public to private peering.

After studying impact of market penetration, we consider the impact of parameter д in the gain

function G (ϕl ) = 1 − д(1 − ϕl )2. When д increases, the discount on the weight αmβn will be more

prominent, reducing the attractiveness of pair of providers more quickly. This can be used to model

the scenario where users are becoming more sensitive to service quality. With the emergence

of new real-time multimedia applications, e.g., 3D virtual reality, as well as new standards, e.g.,

superHD [62], that require higher video resolutions, we expect that users will be more sensitive

to service quality and cannot be satisfied with low levels of peering. This implies that the value

of д will increase for the near future. In Figure 9, we vary the sensitivity parameter д of the gain
function along the x-axis and plot the same metrics as before. The initial equilibrium can be referred

to as the point at д = 0.5. We observe that if д is very small, i.e., users are not sensitive to quality,

CPs would not have incentives to peer. As д increases, providers start to engage in peering and

strengthen their contracts, i.e., increasing both the contractual level ϕ∗l and transferψ
∗
l . We observe

that the sequence and intensity of peering contracts follow the strict ordering of superiority, i.e.,
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Netflix > Amazon > Hulu, characterized in Corollary 4.5. Although the plots for market share and

Herfindahl index show some non-smooth turning points, they occur when a CP-AP pair switches

from public peering, i.e., ϕ∗l = 0, to private peering. Before any peering contract is engaged, we

observe that the market share of each CP decreases as д increases, due to the loss of market share

to outside options. Since the multiplier G (0) is the same for all CPs, their relative market shares

remain the same, so as the Herfindahl index. From the bottom right subfigure, we observe that

after Netflix signs the first contract with Comcast, the market will become less competitive as д
increases. This is because Netflix is the only CP that provides a quality service in the market and its

advantage becomes more prominent when users are more sensitive to quality. However, as Amazon

and Hulu start to peer with Comcast, this increasing trend in the Herfindahl index gets dampen and

even reverted, respectively. This pattern continues as Netflix start to peer with Verizon, followed

by Amazon and Hulu.

To conclude this section, we find that the optimal peering strategies of providers and the evolution

of contractual equilibrium are also directly impacted by the superiority and market dominance of

providers. In particular, any non-dominant CP will enhance its peering contracts when it becomes

superior and will weaken them when another CP becomes superior. The dominant CP, however,

will behave oppositely, except that it will also raise the contractual levels when its per-user revenue

increases. With the growing market penetration, the contractual levels of non-dominant CPs

will increase, while that of the dominant CP will decrease, resulting in a fiercer competition in

the content market.

6 RELATEDWORK
Evolution of Internet peering: The pioneering work of Gao [28] analyzed the Border Gateway

Protocol (BGP) and used BGP routing data to infer and validate the peering relationships between

autonomous systems (ASes). Because peering forms the Internet topology, a voluminous literature

studied the impact of peering on the evolution of the Internet topology. Chang et al. [11] and

Oliveira et al. [60] studied the evolution of the AS-level topology based on a decision model

of peering and an empirical model, respectively. Dhamdhere et al. [21] proposed a value-based

quantitative framework to study peering agreements. Jesus et al. [40] studied the topological

properties induced by cascading interconnection agreements. Lodhi et al. [45] and Dhamdhere et

al. [20] used agent-based modeling and simulation to study the network formation process and

the peering decision of transit ISPs, respectively. Tan et al. [72] investigated peering arrangements

at the Internet backbone intending to identify optimal peering strategies which help backbone

providers improve routing decisions and service quality. As the Internet was primarily utilized

as a communication network, prior works focused on the transit service sold by ASes via peering

and the corresponding two traditional forms of peering: provider-to-customer and peer-to-peer,

which were conjectured to be the only stable peering models [39]. With the rise of video streaming

giant Netflix recently, the Internet has been evolving into a content-centric network. Based on

traceroute measurements, Gill et al. [29] revealed a flattening phenomenon of the Internet topology,

while Dhamdhere et al. [20] explored the explanations for such a topological transition towards a

flatter mesh. Through measurements of inter-domain traffic during 2007-2009, Labovitz et al. [43]

identified significant changes in inter-AS traffic patterns and evolution of ASes’ peering strategies.

Based on coalition game theory, Ma et al. [50] showed that a reverse provider-to-customer peering

would emerge. Faratin et al. [24] and Lodhi et al. [46] analyzed the complexity of peering and

discussed the emergence of paid peering (also known as premium peering).

This new form of peering is driven by the new requirements from delay/throughput sensitive CPs

that value service quality more than best-effort connectivity, while existing forms of peering were

unable to address. For example, Netflix uses multiple third-part content delivery networks (CDNs),
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e.g., Akamai, Level 3 and Limelight [4], to deliver its content to end users. In turn, CDNs collaborate,

i.e., establish paid peering, with ISPs (including APs) for hosting their servers in ISPs’ data centers.

A few work explored challenges and proposed solutions in CDN-ISP collaborations [25, 33, 44].

Frank et al. [25] identified two key enablers, i.e., informed end-user to server assignment and

in-network server allocation, based on which they designed a prototype system for supporting

the collaborations and improving content delivery performance. Herbaut et al. [33] proposed a

CDN as-a-Virtual-Network-Function approach to tackle the Server Selection (SS) ones and Traffic

Engineering (TE) problems [41] in the collaborations. Lai et al. [44] designed and implemented an

architecture using SDN and NFV techniques to enhance request rerouting in the collaborations for

improving user-perceived QoS. In recent years, many ISPs, especially large APs, e.g., Comcast and

Verizon, have built their own CDNs [2, 3]. Plus end-users still rely on the last-mile APs for accessing

the Internet and obtaining CPs’ contents, CPs have been increasingly established paid peering

with APs, e.g., Netflix-Comcast [76] and Netflix-Verizon [31]. In this work, we study the peering

contracts, a type of collaboration between CPs and APs. In particular, we explore the formation

and evolution of CP-AP collaborations from an economic perspective, while the prior work on

CDN-ISP collaborations mainly focused on designing new systems, architectures or approaches for

supporting the collaborations and improving user-perceived QoS from a technical perspective.

Modeling of paid peering: Some recent work modeled and analyzed paid peering between CPs

and APs from an economic perspective. Gyarmati et al. [32] and Courcoubetis et al. [16] proposed

a churn model to determine the fair prices of paid peering between CPs and APs. Zarchy et al. [77]

designed a techno-economic interconnection framework to address the various types of peering

disputes. All the three work used the concept of Nash bargaining [55]. Ma [49] studied CPs’ strategic

peering decisions given the paid peering options provided by APs. Courcoubetis et al. [17] made

a qualitative study on the impacts of paid peering agreements on social welfare and providers’

surplus. Wang et al. [74] explored the optimal peering scheme for an AP to offer CPs one of or both

paid peering or settlement-free peering under profit-optimal or welfare-optimal objective.

The prior work except Ma’s work [49] did not model the interactions among peering contracts

engaged by different CP-AP pairs, i.e., they did not capture the competition among multiple

providers (neither CPs nor APs). Ma’s work [49] only analyzed the impact of competition on paid

peering in the markets with monopoly or duopoly CPs or APs. Compared to them, our work is

the first to model and analyze the interactions among different CP-AP pairs’ peering contracts in

the markets including any number of CPs and APs. Our general model and analysis can provide a

more universal understanding on the formation and evolution of peering contracts under different

Internet market structures including monopoly, duopoly, and oligopoly which all widely exist in

many countries and regions. The prior work all modeled the contract term only by a monetary

transfer under which providers can only negotiate transfer prices if they sign contracts. Compared

to the prior work, we model the contract term by a tuple of monetary transfer and contractual level

under which providers can negotiate not only the transfer prices but also the degrees of contracts,

i.e., the quality of private peering. This generalization provide a more faithful characterization

on the real cases that APs can deploy different amount of resources, e.g., bandwidth or cache, to

build different qualities of private peering based on which CPs pay different prices to APs. Besides,

our work first reveal that market dominance plays a key role on the peering contract strategies of

providers. This new finding shows the difference of formation and evolution of peering contracts

in highly competitive markets and monopolized markets, which could help regulatory authorities

to understand private peering contracts and legislate desirable regulations.
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Network games and club goods: The model in our work can be considered as a network game
6

on a bipartite graph of CPs and APs. Network games and their equilibria have been studied in some

literature of economics [5, 27, 54, 61]. In their models, the vertices in networks represent players

who individually decide their strategies and an edge exists between two vertices if a vertex’s payoff

is influenced by the other’s strategy. Unlike them, our model is a physical model where vertices are

the physical entries of CPs and APs who jointly decided contract strategies and edges represents

the peering links between CPs and APs
7
. Besides, for tractability, the literature usually assumes

that the utility functions of players are bilinear functions (e.g., [5]), linear-quadratic functions (e.g.,

[54]), or functions of the linear combination of other players (e.g., [27, 61]). In our work, the utility

functions of providers are constructed based on a contract model and a user choice model, and

does not satisfy any of the assumptions in the literature.

In our scenario, the content services provided by CPs can be considered as club goods. All

the end-users subscribing to a CP’s service form a group/club and each user is a member of the

club. Theory of club goods has been studied in some literature of economics [6, 9, 15, 59, 66, 70].

Most of the literature (e.g., [6, 9, 15, 59]) studied the resulting outcome under the hypothesis of

coordinated actions by a club’s members to optimize the welfare of the club, while our work focused

on the non-cooperative peering actions by the providers to optimize their individual profits. A few

literature (e.g., [66, 70]) examined Nash equilibrium in club games, where the providers choose

strategies, e.g., provision levels or membership prices, to maximize their profits. When using their

model to capture our problem, the Nash equilibrium generated is the equilibrium under group

deviation mentioned in Section 2, which is sufficient of being our contractual equilibrium.

“Nash-in-Nash” solution and bilateral oligopoly: From a modeling perspective, our characteri-

zation of the steady-state peering contracts, i.e., contractual equilibrium, constitute a “Nash-in-Nash”

solution, i.e., separate bilateral Nash bargaining problems within a Nash equilibrium to a game

played among all pairs of firms, which has been explored and employed in some literature of

industrial organization [8, 14, 22, 37]. Collard-Wexler [14] proposed a non-cooperative foundation

for the “Nash-in-Nash" solution between multiple upstream and downstream firms, which provides

strong support for the solution as a viable surplus division rule. Based on “Nash-in-Nash" solution,

Dobson and Waterson [22] examined the competition and welfare effects of vertical price fixing

through industry-wide resale price maintenance arrangements. Björnerstedt and Stennek [8] de-

veloped a model where upstream and downstream firms meet to negotiate contracts specifying

prices and quantities in simultaneous and interdependent Rubinstein-Ståhl negotiations. Horn

and Wolinsky [37] analyzed a duopoly in which firms acquire inputs through bilateral monopoly

relations with suppliers to explore how input prices and profits are affected by the structures of

the upstream and downstream industries. [22, 37] focused on the cases where the upstream or

downstream markets include monopoly or duopoly firms, while [8, 14] and our work consider the

more general upstream or downstream markets including oligopoly firms. Compared to [8, 14], our

work only not captured the structure of “Nash-in-Nash” solution, but also studied its sensitivity to

varying market parameters, which helps understand the evolution of “Nash-in-Nash” solution in

fast-developing Internet markets.

6
In a broad sense, network games (also known as games on network) are the games which capture the strategic interactions

of individual players in structured networks/graphs.

7
Notice that if we model CPs and APs as the players in the network game framework, an edge might exist for a CP-AP

pair even they do not have a direct peering link, because their strategies on other links might affect each other’s aggregate

utility. On the other hand, if we take each CP-AP pair as a player in the network game framework, the formed network

would be a complete graph where a vertex is a CP-AP pair and any two vertices are connected by an edge, because the

utility of a CP-AP pair is influenced by any other CP-AP pair. In either case, the network does not have a special structure

and the solution concept reduces to a standard Nash equilibrium for a non-cooperative game.
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In our work, the Internet markets consisting of multiple CPs and APs considered is a bilateral

oligopoly [26]. A body of literature in economics has examined the effects of competition, bargaining,

bundling, or integration among agents/firms within traditional bilateral oligopoly environments

such as health care markets [35, 36] and cable television markets [18, 19]. Similar to the prior

work on modeling of paid peering [16, 17, 32, 49, 74, 77], the work [18, 19, 35, 36] also modeled the

contract term only by a monetary transfer, while our work extends it to a tuple of contractual level

and monetary transfer, which characterizes the cases that downstream firms can choose different

amounts of resources from upstream firms and pay different prices to them.

7 CONCLUSIONS
In this paper, we study the private peering contracts between content providers (CPs) and access

providers (APs). We propose a novel model which characterizes the contract terms between CPs and

APs in terms of contractual levels and monetary transfers. We introduce the concept of contractual

equilibrium that captures the steady-state peering contracts on the entire Internet content market.

Based on our model and by using market data, we emulate the strategic peering behaviors between

providers and analyze the formation and evolution of their peering contracts. The emulation and

analytical results show that superiority and market dominance of providers are the two major

factors in determining their optimal peering strategies. In particular, superior providers have strong

incentives to start the initial peering contract and tend to peer at high contractual levels. Dominant

and non-dominant CPs often have opposite optimal peering strategies as the market environments

or CPs’ intrinsic properties change.
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A PROOFS OF THEORETICAL RESULTS
In this appendix, we give the proofs of theoretical results.

Proof of Theorem 2.2: By substituting the expressions (1) of providers’ profits into the two

conditions in Definition 2.1, we know that given the contract profile (ϕ−l ,ψ−l ) of all other pairs,
(ϕ∗l ,ψ

∗
l ) is an optimal contract of the CP-AP pair l if and only if it satisfies that




ϕ∗l ∈ arg maxϕ̄l ∈[0,1]
{
Um (ϕ̄l ;ϕ−l ) −Vn (ϕ̄l ;ϕ−l )

}

ψ ∗l =
1
2

[
Um (ϕ∗l ,ϕ−l ) −Um (0,ϕ−l ) +Vn (ϕ

∗
l ,ϕ−l ) −Vn (0,ϕ−l )

]
.

Furthermore, if the functionWl (ϕ) ≜ Um (ϕ) − Vn (ϕ) is strictly concave in the level ϕl , it must

have a unique maximum point, i.e., arg maxϕ̄l ∈[0,1]
{
Um (ϕ̄l ;ϕ−l ) −Vn (ϕ̄l ;ϕ−l )

}
is a single-valued

function of the levels ϕ−l . Therefore, there exists a unique optimal contract (ϕ∗l ,ψ
∗
l ) and its level

satisfies ϕ∗l = arg maxϕ̄l ∈[0,1]
{
Um (ϕ̄l ;ϕ−l ) −Vn (ϕ̄l ;ϕ−l )

}
. □

Proof of Corollary 2.4: By Definition 2.3, if (ϕ,ψ) is a contractual equilibrium, the contract

(ϕl ,ψl ) of any pair is its optimal contract, from which we can derive that for any (ϕ̄l ,ψ̄l ) satisfying

Pm (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) ≥ Pm (0,ϕ−l , 0,ψ−l ) and Qn (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) ≥ Qn (0,ϕ−l , 0,ψ−l ),

[Pm (ϕ,ψ) − Pm (0,ϕ−l , 0,ψ−l )] [Qn (ϕ,ψ) −Qn (0,ϕ−l , 0,ψ−l )]

=

[
Pm (ϕ,ψ) − Pm (0,ϕ−l , 0,ψ−l ) +Qn (ϕ,ψ) −Qn (0,ϕ−l , 0,ψ−l )

2

]2

≥



Pm (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) − Pm (0,ϕ−l , 0,ψ−l ) +Qn (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) −Qn (0,ϕ−l , 0,ψ−l )
2



2

≥
[
Pm (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) − Pm (0,ϕ−l , 0,ψ−l )

] [
Qn (ϕ̄l ,ϕ−l ,ψ̄l ,ψ−l ) −Qn (0,ϕ−l , 0,ψ−l )

]

where the equality is implied by the second condition in Definition 2.1, and the two inequalities are

implied by the first condition in Definition 2.1 and the inequality of arithmetic and geometric means.

Thus the contract (ϕl ,ψl ) is a Nash bargaining solution between CPm and AP n, and therefore, the

contractual equilibrium (ϕ,ψ) is a Nash-in-Nash solution. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 41. Publication date: December 2020.

https://www.statista.com/statistics/499844/netflix-markets-penetration/
https://www.statista.com/statistics/499844/netflix-markets-penetration/
https://www.verizon.com/about/investors/annual-report
https://www.verizon.com/about/investors/annual-report
https://www.nytimes.com/2014/02/24/business/media/comcast-and-netflix-reach-a-streaming-agreement.html


41:24 Xin WANG and Richard MA

Before proving the remaining theorems and corollaries, we give two lemmas as a preliminary.

We consider a strategic game among the CP-AP pairs in the set L. The strategy and payoff function

of each pair l = (m,n) ∈ L are the contractual level ϕl and the utilityWl (ϕ) ≜ Um (ϕ) − Vn (ϕ),
respectively. By Karush-Kuhn-Tucker (KKT) conditions and Equation (3) and (4), we can readily

deduce the following lemma.

Lemma A.1. For any pair l = (m,n) ∈ L, given the contract profile (ϕ−l ,ψ−l ) of other pairs, its
optimal contract (ϕ∗l ,ψ

∗
l ) satisfies

∂Wl (ϕ
∗
l ,ϕ−l )

∂ϕl
= um

αmβnG
′(ϕ∗l )[1 − πm (ϕ∗l ,ϕ−l )]X

αmβnG (ϕ∗l ) +
∑

k=(i, j )∈L\{l } αiβjG (ϕk )
−vn




≤ 0 if ϕ∗l = 0;
= 0 if ϕ∗l ∈ (0, 1);
≥ 0 if ϕ∗l = 1.

(5)

We define that the vector of contractual levels ϕ is a Nash equilibrium if and only if for any

pair l , it satisfiesWl (ϕ) ≥ Wl (ϕ̄,ϕ−l ),∀ϕ̄ ∈ [0, 1], i.e., any pair l cannot improve its utilityWl by

unilaterally changing its contractual level. By Theorem 2.2 and Definition 2.3, we have the next

lemma directly.

Lemma A.2. A contract profile (ϕ,ψ) is a contractual equilibrium iff ϕ is a Nash equilibrium and
the transfer of each pair l = (m,n) ∈ L satisfiesψl = [Um (ϕ) −Um (0,ϕ−l ) +Vn (ϕ) −Vn (0,ϕ−l )] /2.

Proof of Theorem 2.5: By Lemma A.2, the existence and uniqueness of contractual equilib-

rium is equivalent to the existence and uniqueness of Nash equilibrium, respectively. By Debreu-

Glicksberg-Fan Theorem, ifWl (ϕ) is quasi-concave in ϕl for any pair l ∈ L, there must exist a

Nash equilibrium on the compact and convex set [0, 1] |L | .
Next, we prove the uniqueness by contradiction. The condition (2) guarantees thatWl (ϕ) is

concave in ϕl for any ϕ−l . Suppose there exists two distinct Nash equilibria ϕ̂ and ϕ̃. By concavity

ofWl (ϕ) in ϕl and the maximum principle, for any pair l ∈ L and any contractual level ϕ̄l ∈ [0, 1],

(ϕ̄l − ϕ̂l )
Wl (ϕ̂)

∂ϕl
≤ 0 and (ϕ̄l − ϕ̃l )

Wl (ϕ̃)

∂ϕl
≤ 0.

By substituting ϕ̄ = ϕ̃ in the first inequality and ϕ̄ = ϕ̂ in the second inequality, we have for any

l ∈ L,

(ϕ̃l − ϕ̂l )
Wl (ϕ̂)

∂ϕl
≤ 0 and (ϕ̂l − ϕ̃l )

Wl (ϕ̃)

∂ϕl
≤ 0.

By adding the above inequalities, we further deduce for any l ∈ L,

(ϕ̃l − ϕ̂l )

[
Wl (ϕ̃)

∂ϕl
−
Wl (ϕ̂)

∂ϕl

]
≥ 0

which is contradictory with the condition (2). □
Proof of Corollary 3.1: If the gain functionG (·) is strictly concave, i.e.,G ′′(ϕl ) < 0, by Equation

(3) and (4), we can deduce for any l = (m,n) ∈ L,

∂2Wl (ϕ)

∂ϕ2
l

= umπl (ϕ)[1 − πm (ϕ)]X


G ′′(ϕl )

G (ϕl )
− 2πl (ϕ)

(
G ′(ϕl )

G (ϕl )

)2
< 0 (6)

implying thatWl (ϕ) is strictly concave in the contractual level ϕl . By Theorem 2.2 and 2.5, the

uniqueness of optimal contract and the existence of contractual equilibrium are guaranteed.
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For any distinct levels ϕ0 , ϕ1
, we assume

∑
k=(i, j )∈L\L0 αiβjG (ϕ0

k ) ≥
∑

k=(i, j )∈L\L0 αiβjG (ϕ1
k )

without loss of generality, from which∑
m∈M\{0}

πm (ϕ0) =

∑
k=(i, j )∈L\L0 αiβjG (ϕ0

k )∑
k=(i, j )∈L αiβjG (ϕ0

k )
≥

∑
k=(i, j )∈L\L0 αiβjG (ϕ1

k )∑
k=(i, j )∈L αiβjG (ϕ1

k )
=

∑
m∈M\{0}

πm (ϕ1).

Thus, there are only two cases: 1) the system includes a CP s ∈ M\{0} satisfying πs (ϕ0) > πs (ϕ
1),

and 2) each CPm ∈ M\{0} satisfies πm (ϕ0) = πm (ϕ1). For the first case, because∑
k=(s, j )∈Ls αsβjG (ϕ0

k )∑
k=(i, j )∈L αiβjG (ϕ0

k )
= πs (ϕ

0) > πs (ϕ
1) =

∑
k=(s, j )∈Ls αsβjG (ϕ1

k )∑
k=(i, j )∈L αiβjG (ϕ1

k )
,

there must exist a pair r = (s, t ) ∈ Ls including the CP s satisfying G (ϕ0
r ) > G (ϕ1

r ). For the second
case, we can also find a pair r = (s, t ) ∈ Ls satisfying G (ϕ0

r ) > G (ϕ1
r ); otherwise, the contractual

levels ϕ0
and ϕ1

must be the same which is contradictory with our assumption. Because the

gain function G is increasing and strictly concave in the level ϕ, we know that ϕ0
r > ϕ1

r and

G ′(ϕ0
r ) < G ′(ϕ1

r ). Because

(ϕ0
r −ϕ

1
r )

[
Wr (ϕ

0)

∂ϕr
−
Wr (ϕ

1)

∂ϕr

]
= (ϕ0

r −ϕ
1
r )usX



αsβtG
′(ϕ0

r )
(
1 − πs (ϕ0)

)
∑

k=(i, j )∈L αiβjG (ϕ0
k )
−
αsβtG

′(ϕ1
r )

(
1 − πs (ϕ1)

)
∑

k=(i, j )∈L αiβjG (ϕ1
k )


< 0,

by the condition (2) in Theorem 2.5, the uniqueness of equilibrium is guaranteed. □
Proof of Theorem 4.1: We first show ϕ∗l (0) ≥ ϕ

∗
k (0) by contradiction. Suppose ϕ∗l (0) < ϕ

∗
k (0),

by Lemma A.1, it satisfies

∂Wl
(
ϕ∗l (0), 0

)
∂ϕl

≤ 0 ≤
∂Wk

(
ϕ∗k (0), 0

)
∂ϕk

. (7)

We denote ϕ̂k ≜ ϕ∗l (0). Because CPm is non-dominant after signing an optimal contract, we have

that

πm (ϕ∗l (0), 0) =
αmβn [G

(
ϕ∗l (0)

)
−G (0)] +

∑
(m,t )∈Lm αmβtG (0)

αmβn [G
(
ϕ∗l (0)

)
−G (0)] +

∑
(s,t )∈L αsβtG (0)

< 50%. (8)

Plus the conditionsm ≽ i and n ≽ j, i.e., um ≥ ui ,αm ≥ αi and vn ≤ vj , βn ≥ βj , and Equation (5),

we can derive that

∂Wl
(
ϕ∗l (0), 0

)
∂ϕl

= um
αmβnG

′(ϕ∗l (0))[
∑

(m,t )∈L\Lm αmβtG (0)]
{
αmβn [G (ϕ∗l (0)) −G (0)] +

∑
(s,t )∈L αsβtG (0)

}2X −vn

≥ ui
αiβjG

′(ϕ̂k )[
∑

(i,t )∈L\Li αiβtG (0)]
{
αiβj [G (ϕ̂k ) −G (0)] +

∑
(s,t )∈L αsβtG (0)

}2X −vj =
∂Wk

(
ϕ̂k , 0

)
∂ϕk

. (9)

Combining Equation (7) and (9), we have

∂Wk
(
ϕ̂k , 0

)
∂ϕk

≤
∂Wl

(
ϕ∗l (0), 0

)
∂ϕl

≤ 0 ≤
∂Wk

(
ϕ∗k (0), 0

)
∂ϕk

. (10)

By Equation (6),Wk (ϕk , 0) is strictly concave in the level ϕk and thus we have ∂Wk
(
ϕ̂k , 0

)
/∂ϕk >

∂Wk
(
ϕ∗k (0), 0

)
/∂ϕk under ϕ̂k = ϕ

∗
l (0) < ϕ

∗
k (0). This is contradictory with Equation (10). Therefore,

it must satisfy ϕ∗l (0) ≥ ϕ
∗
k (0).
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We denote ϕ̂l = ϕ
∗
k (0). By Equation (8), we further have

πm (ϕ̂l , 0) =
αmβn [G (ϕ̂l ) −G (0)] +

∑
(m,t )∈Lm αmβtG (0)

αmβn [G (ϕ̂l ) −G (0)] +
∑

(s,t )∈L αsβtG (0)
πm (ϕ∗l (0), 0) < 50%.

Plus the conditionsm ≽ i and n ≽ j, we can deduce that

∆l = um [πm (ϕ∗l (0), 0) − πm (0, 0)] −vnϕ∗l (0) ≥ um [πm (ϕ̂l , 0) − πm (0, 0)] −vnϕ̂l

= um



αmβn [G (ϕ̂l ) −G (0)] +
∑

(m,t )∈Lm αmβtG (0)

αmβn [G (ϕ̂l ) −G (0)] +
∑

(s,t )∈L αsβtG (0)
−

∑
(m,t )∈Lm αmβtG (0)∑
(s,t )∈L αsβtG (0)



−vnϕ̂l

≥ ui




αiβj [G
(
ϕ∗k (0)

)
−G (0)] +

∑
(i,t )∈Li αiβtG (0)

αiβj [G
(
ϕ∗k (0)

)
−G (0)] +

∑
(s,t )∈L αsβtG (0)

−

∑
(i,t )∈Li αiβtG (0)∑
(s,t )∈L αsβtG (0)



−vjϕ

∗
k (0)

= ui [πi (ϕ∗k (0), 0) − πi (0, 0)] −vjϕ
∗
k (0) = ∆k

where the first inequality is implied by the optimality of the level ϕ∗l (0). Therefore, the profit

growths satisfies ∆l ≥ ∆k . □
Proof of Theorem 4.2 and 4.3: For any two pairs l = (m,n) and k = (i, j ), given the contractual

levels of other pairs, by Theorem 3.1, ϕ∗l is unique for any given ϕk . Thus we can write it as a

function of ϕk , denoted by ϕ∗l (ϕk ). By Theorem 2.2, ϕ∗l (ϕk ) maximizes the utilityWl (ϕ) for any
ϕk . Thus it is the solution of a variational inequality, denoted by VI([0, 1],−∂Wl (ϕ)/∂ϕl ). By
Proposition 1.3.4 of [23], ϕ∗l (ϕk ) is the solution of the variational inequality if and only if it solves

the Karush-Kuhn-Tucker (KKT) system of the variational inequality, i.e., there exists a multiplier

λ = (λ1, λ2) such that for any level ϕk ∈ [0, 1],
(
ϕ∗l (ϕk ),λ

)
satisfies the following equations:

−
Wl

(
ϕ∗l (ϕk ),ϕ−l

)
∂ϕl

+ λ1 − λ2 = 0, 0 ≤ λ1⊥[ϕ∗l (ϕk ) − 1] ≤ 0, and 0 ≤ λ2⊥[ − ϕ∗l (ϕk )] ≤ 0.

Furthermore, by Theorem 5.4.12 of [23], the derivative dϕ∗l (ϕk )/dϕk is the unique solution of an

affine variational inequality, denoted by AVI
(
C,−∂2Wl (ϕ

∗
l ,ϕ−l )/∂ϕl ∂ϕk ,−∂

2Wl (ϕ
∗
l ,ϕ−l )/∂ϕ

2
l

)
,

where the set C is defined by

C =




(−∞,+∞) if ϕ∗l (ϕk ) ∈ (0, 1);
[0,+∞) if λ2 = 0,ϕ∗l (ϕk ) = 0;
(−∞, 0] if λ1 = 0,ϕ∗l (ϕk ) = 1;
{0} if (λ1 > 0,ϕ∗l (ϕk ) = 1) or (λ2 > 0,ϕ∗l (ϕk ) = 0).

and by Equation (3) and (4), the second partial derivatives satisfy

∂2Wl (ϕ
∗
l ,ϕ−l )

∂ϕ2
l

= umπl (ϕ
∗
l ,ϕ−l )[1 − πm (ϕ∗l ,ϕ−l )]X



G ′′(ϕl )

G (ϕl )
− 2πl (ϕ∗l ,ϕ−l )

(
G ′(ϕl )

G (ϕl )

)2
< 0,

∂2Wl (ϕ
∗
l ,ϕ−l )

∂ϕl ∂ϕk
=




−2um [1 − πm (ϕ∗l ,ϕ−l )]πl (ϕ
∗
l ,ϕ−l )

G ′(ϕl )

G (ϕl )
πk (ϕ

∗
l ,ϕ−l )

G ′(ϕk )

G (ϕk )
X if k ∈ Lm ;

um [2πm (ϕ∗l ,ϕ−l ) − 1]πl (ϕ∗l ,ϕ−l )
G ′(ϕl )

G (ϕl )
πk (ϕ

∗
l ,ϕ−l )

G ′(ϕk )

G (ϕk )
X if k < Lm
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from which we have

∂2Wl (ϕ
∗
l ,ϕ−l )

∂ϕl ∂ϕk




< 0 if k ∈ Lm ;
< 0 if k < Lm

and πm (ϕ∗l ,ϕ−l ) < 50%;
> 0 if k < Lm

and πm (ϕ∗l ,ϕ−l ) > 50%.

By solving AVI(C,−∂2Wl/∂ϕl ∂ϕk ,−∂
2Wl/∂ϕ

2
l ), we can get its unique solution as follows:

1) when the set C = (−∞,+∞),

dϕ∗l (ϕk )

dϕk
= −
∂2Wl (ϕ

∗
l ,ϕ−l )/∂ϕl ∂ϕk

∂2Wl (ϕ
∗
l ,ϕ−l )/∂ϕ

2
l




< 0 if k ∈ Lm
or

(
k < Lm ,πm

(
ϕ∗l (ϕk ),ϕ−l

)
< 50%

)
;

> 0 if k < Lm ,πm
(
ϕ∗l (ϕk ),ϕ−l

)
> 50%.

2) when the set C = [0,+∞),

dϕ∗l (ϕk )

dϕk
=




0 if k ∈ Lm
or

(
k < Lm ,πm

(
ϕ∗l (ϕk ),ϕ−l

)
< 50%

)
;

−
∂2Wl (ϕ

∗
l ,ϕ−l )/∂ϕl ∂ϕk

∂2Wl (ϕ
∗
l ,ϕ−l )/∂ϕ

2
l

> 0 if k < Lm ,πm
(
ϕ∗l (ϕk ),ϕ−l

)
> 50%.

3) when the set C = (−∞, 0],

dϕ∗l (ϕk )

dϕk
=




−
∂2Wl (ϕ

∗
l ,ϕ−l )/∂ϕl ∂ϕk

∂2Wl (ϕ
∗
l ,ϕ−l )/∂ϕ

2
l

< 0 if k ∈ Lm
or

(
k < Lm ,πm

(
ϕ∗l (ϕk ),ϕ−l

)
< 50%

)
;

0 if k < Lm ,πm
(
ϕ∗l (ϕk ),ϕ−l

)
> 50%.

4) when the set C = {0}, dϕ∗l (ϕk )/dϕk = 0.
Therefore, we have that if k ∈ Lm

, ϕ∗l (ϕk ) is non-increasing in ϕk , and if k < Lm
, ϕ∗l (ϕk ) is

non-increasing (non-decreasing) in ϕk if πm
(
ϕ∗l (ϕk ),ϕ−l

)
< 50% (πm

(
ϕ∗l (ϕk ),ϕ−l

)
> 50%).

Furthermore, by Theorem 2.2, we can deduce that

dψ ∗l (ϕk )

dϕk
=

1
2

[
∂Um (ϕ∗l ,ϕ−l )

∂ϕ∗l

dϕ∗l (ϕk )

dϕk
+
∂Um (ϕ∗l ,ϕ−l )

∂ϕk
−
∂Um (0,ϕ−l )
∂ϕk

+
∂Vn (ϕ

∗
l ,ϕ−l )

∂ϕ∗l

dϕ∗l (ϕk )

dϕk

+
∂Vn (ϕ

∗
l ,ϕ−l )

∂ϕk
−
∂Vn (0,ϕ−l )
∂ϕk

]
=

1
2

[
umX

(
∂πm (ϕ∗l ,ϕ−l )

∂ϕ∗l
+vn

)
dϕ∗l (ϕk )

dϕk

+ umX

(
∂πm (ϕ∗l ,ϕ−l )

∂ϕk
−
∂πm (0,ϕ−l )
∂ϕk

) ] 


≤ 0 if k ∈ Lm ;
≤ 0 if k < Lm ,πm

(
ϕ∗l (ϕk ),ϕ−l

)
< 50%;

≥ 0 if k < Lm ,πm
(
0,ϕ−l

)
> 50%.

Therefore, we have that if k ∈ Lm
, ψ ∗l (ϕk ) is non-increasing in ϕk , and if k < Lm

, ψ ∗l (ϕk ) is

non-increasing (non-decreasing) in ϕk if πm
(
ϕ∗l (ϕk ),ϕ−l

)
< 50% (πm (0,ϕ−l ) > 50%). □

Proof of Corollary 4.5: Since the proof of Theorem 4.4 needs the result of Corollary 4.5, we first

prove Corollary 4.5. We prove the existence of the full ordering of CPs by contradiction. For any two

CPsm,m′ ∈ M and APn ∈ N , ifϕ∗mn > ϕ
∗
m′n ,G

′(ϕ∗mn ) < G ′(ϕ∗m′n ) becauseG (ϕ) is strictly concave
in ϕ. By Lemma A.1 and Definition 2.3, it satisfies ∂Wmn (ϕ

∗)/∂ϕmn ≥ 0 ≥ ∂Wm′n (ϕ
∗)/∂ϕm′n from

which we have

umαm [1 − πm (ϕ∗)]
um′αm′ [1 − πm′ (ϕ∗)]

≥
G ′(ϕ∗m′n )

G ′(ϕ∗mn )
> 1. (11)

Suppose ϕ∗mn′ < ϕ
∗
m′n′ for some AP n′ ∈ N , similarly, we can deduce

umαm [1 − πm (ϕ∗)]
um′αm′ [1 − πm′ (ϕ∗)]

≤
G ′(ϕ∗m′n′ )

G ′(ϕ∗mn′ )
< 1
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which is contradictory with Inequality (11). Therefore, it must satisfy ϕ∗mn′ ≥ ϕ∗m′n′ for any AP

n′ ∈ N . Similarly, we can prove that such a full ordering of APs also exists. □
Proof of Theorem 4.4: We first prove ϕ∗mn ≥ ϕ

∗
in ifm ≽ i by contradiction. Suppose ϕ∗mn < ϕ

∗
in ,

by Corollary 4.5, it satisfies ϕ∗mt ≤ ϕ
∗
it for any t ∈ N . Because G (ϕ) is increasing in ϕ, G (ϕ∗mt ) ≤

G (ϕ∗it ) for any t ∈ N and thus we have

πm (ϕ∗) = αm

∑
(m,t )∈Lm βtG (ϕ∗mt )∑
(s,t )∈L αsβtG (ϕ∗st )

≤ αm

∑
(i,t )∈Li βtG (ϕ∗it )∑

(s,t )∈L αsβtG (ϕ∗st )
=
αm
αi

πi (ϕ
∗). (12)

Because G (ϕ) is strictly concave in ϕ, G ′(ϕ∗mn ) > G ′(ϕ∗in ) if ϕ
∗
mn < ϕ∗in . By Lemma A.1 and

Definition 2.3, it satisfies ∂Wmn (ϕ
∗)/∂ϕmn ≤ 0 ≤ ∂Win (ϕ

∗)/∂ϕin from which we can derive

umαm [1 − πm (ϕ∗)]
uiαi [1 − πi (ϕ∗)]

≤
G ′(ϕ∗in )

G ′(ϕ∗mn )
< 1. (13)

Combining Inequalities (12) and (13), we can deduce that

πm (ϕ∗)[1 − πm (ϕ∗)]
πi (ϕ

∗)[1 − πi (ϕ∗)]
≤
αm [1 − πm (ϕ∗)]
αi [1 − πi (ϕ∗)]

<
ui
um
≤ 1 (14)

where the final inequality is implied by m ≽ i . Furthermore, because um ≥ ui and αm ≥ αi
under m ≽ i , by Equation (13), we have πm (ϕ∗) > πi (ϕ

∗) > 0. Plus πm (ϕ∗) + πi (ϕ
∗) ≤ 1, it

satisfies πm (ϕ∗)[1−πm (ϕ∗)] ≥ πi (ϕ∗)[1−πi (ϕ∗)] which is contradictory with Inequality (14). Thus

ϕ∗mn ≥ ϕ
∗
in ifm ≽ i .

We then prove ϕ∗in ≥ ϕ∗i j if n ≽ j. Suppose ϕ∗in < ϕ∗i j , then G ′(ϕ∗in ) > G ′(ϕ∗i j ) because G (ϕ)

is strictly concave in ϕ. By Lemma A.1 and Definition 2.3, it satisfies ∂Win (ϕ
∗)/∂ϕin ≤ 0 ≤

∂Wi j (ϕ
∗)/∂ϕi j from which we can derive that

(βnvj )/(βjvn ) ≤ G ′(ϕ∗i j )/G
′(ϕ∗in ) < 1. (15)

However, under n ≽ j, (βnvj )/(βjvn ) ≥ 1 which is contradictory with Inequality (15). Thus

ϕ∗in ≥ ϕ
∗
i j if n ≽ j. In summary, we have ϕ∗mn ≥ ϕ

∗
in ≥ ϕ

∗
i j ifm ≽ i and n ≽ j. □

Proof of Corollary 5.1 and Theorem 5.2, 5.3 and 5.4: These four results are about the sensi-
tivities of pairs’ contractual levels and CPs’ market shares with respect to the weights or per-user

values of CPs. To prove them, we only need to show that the levels ϕ∗ and the corresponding

market share πs of any CP s are differentiable in CPs’ weights and per-user values, and for any two

pairs l = (m,n),k = (i, j ) ∈ L satisfyingm , i ,

∂ϕ∗l
∂αm




≥ 0 if πm (ϕ∗) < 50%
≤ 0 if πm (ϕ∗) ≥ 50%,

∂ϕ∗k
∂αm




≤ 0 if πi (ϕ
∗) < 50%

≥ 0 if πi (ϕ
∗) ≥ 50%,

∂πm
∂αm

≥ 0,

∂πi
∂αm

≤ 0,
∂ϕ∗l
∂um

≥ 0,
∂ϕ∗k
∂um




≤ 0 if πi (ϕ
∗) < 50%

≥ 0 if πi (ϕ
∗) ≥ 50%,

∂πm
∂um

≥ 0,

∂πi
∂um

≤ 0,
∂ϕ∗l
∂α0




≤ 0 if πm (ϕ∗) < 50%
≥ 0 if πm (ϕ∗) ≥ 50%,

and

∂πm
∂α0

≤ 0.

Next, we prove these inequalities. By Lemma A.2, ϕ∗ is the vector of levels under contractual

equilibrium if and only if it is a Nash equilibrium. By Proposition 1.4.2 of [23], ϕ∗ is a Nash

equilibrium if and only if it is the solution of a variational inequality, denoted by VI
(
K , F (ϕ)

)
where K ≜ [0, 1] |L | and F (ϕ) ≜ (−∂Wr (ϕ)/∂ϕr )r ∈L . By Proposition 1.3.4 of [23], ϕ∗ is the solution
of the variational inequality if and only if it solves the Karush-Kuhn-Tucker (KKT) system of the
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variational inequality, i.e., there exists multipliers λ = (λr : r ∈ L) and ν = (νr : r ∈ L) such that

(ϕ∗,λ,ν ) satisfies the following equations:

−
Wr (ϕ

∗)

∂ϕr
+ λr − νr = 0, 0 ≤ λr⊥(ϕ∗r − 1) ≤ 0, and 0 ≤ νr⊥(−ϕ∗r ) ≤ 0, ∀r ∈ L.

By Theorem 5.4.12 and 5.4.13 of [23], ϕ∗ is differentiable in αm and the derivative ∂ϕ∗/∂αm is

the unique solution of an affine variational inequality, denoted by AVI
(
D, JαmF (ϕ

∗), JϕF (ϕ
∗)

)
,

where the set D is defined by

D =




(ρr : r ∈ L) : ρr ∈




(−∞,+∞) if ϕ∗r ∈ (0, 1);
[0,+∞) if νr = 0,ϕ∗r = 0;
(−∞, 0] if λr = 0,ϕ∗r = 1;
{0} if (λr > 0,ϕ∗r = 1) or (νr > 0,ϕ∗r = 0)




(16)

and JαmF (ϕ
∗) and JϕF (ϕ

∗) are the Jacobian matrices of F (ϕ∗) with respect to αm andϕ, respectively,
where for any two pairs r = (s, t ) and k = (i, j ), by Equation (3) and (4), the individual items of

JϕF (ϕ
∗) satisfy

−
∂2Wr (ϕ

∗)

∂ϕr ∂ϕk
=




us [πs (ϕ∗) − 1]πr (ϕ∗)


G ′′(ϕ∗r )

G (ϕ∗r )
− 2πr (ϕ∗)

(
G ′(ϕ∗r )

G (ϕ∗r )

)2
X > 0 if s = i, t = j;

2us [1 − πs (ϕ∗)]πr (ϕ∗)
G ′(ϕ∗r )

G (ϕ∗r )
πk (ϕ

∗)
G ′(ϕ∗k )

G (ϕ∗k )
X > 0 if s = i, t , j;

us [1 − 2πs (ϕ∗)]πr (ϕ∗)
G ′(ϕ∗r )

G (ϕ∗r )
πk (ϕ

∗)
G ′(ϕ∗k )

G (ϕ∗k )
X



> 0 if πs < 50%
≤ 0 if πs ≥ 50%

if s , i .

(17)

The individual items of JαmF (ϕ
∗) satisfy

−
∂2Wr (ϕ

∗)

∂ϕr ∂αm
=




us [2πs (ϕ∗) − 1]
1 − πm (ϕ∗)

αm
πr (ϕ

∗)
G ′(ϕ∗r )

G (ϕ∗r )
X



< 0 if πs < 50%
≥ 0 if πs ≥ 50%

if s =m;

−us [2πs (ϕ∗) − 1]
πm (ϕ∗)

αm
πr (ϕ

∗)
G ′(ϕ∗r )

G (ϕ∗r )
X



> 0 if πs < 50%
≤ 0 if πs ≥ 50%

if s ,m.

We define a set of pairs Pαm ≜ {r = (s, t ) : (λr > 0,ϕ∗r = 1) or (νr > 0,ϕ∗r = 0) or (νr =
0,ϕ∗r = 0,πs (ϕ∗) < 50%, s , m) or (νr = 0,ϕ∗r = 0,πs (ϕ∗) ≥ 50%, s = m) or (λr = 0,ϕ∗r =
1,πs (ϕ∗) ≥ 50%, s , m) or (λr = 0,ϕ∗r = 1,πs (ϕ∗) < 50%, s = m)}. We define two vectors

of levels ϕαm ≜ (ϕr : r ∈ L\Pαm ) and ϕ
∗
αm ≜ (ϕ∗r : r ∈ L\Pαm ). We define a function

H (ϕαm ) ≜ (−∂Wr (ϕ)/∂ϕr )r ∈L\Pαm and denote the Jacobian matrices of H (ϕ∗αm ) with respect

to αm , ϕr , and ϕαm by JαmH (ϕ∗αm ), JϕrH (ϕ∗αm ), and Jϕαm
H (ϕ∗αm ), respectively. We denote sets

M̃αm = {s : ∃t ∈ N such that (s, t ) ∈ L\Pαm } and Ñ
s
αm = {t : (s, t ) ∈ L\Pαm }. For any

pair r = (s, t ), we denote yst ≜ −πr (ϕ∗)[G ′(ϕ∗r )]2/[
(
1 − πs (ϕ∗)

)
G ′′(ϕ∗r )G (ϕ∗r )] ≥ 0 and Y r

αm ≜

−πr (ϕ
∗)G ′(ϕ∗r )/[(1 +

∑
j ∈Ñ s

αm
ys j )

(
1 − πs (ϕ∗)

)
G ′′(ϕ∗r )] ∈ [0, 1). For any CP s , we denote Y s

αm ≜

(
∑

j ∈Ñ s
αm

ys j )/(1 +
∑

j ∈Ñ s
αm

ys j ) ∈ [0, 1). By solving AVI
(
D, JαmF (ϕ

∗), JϕF (ϕ
∗)

)
, we can get its

unique solution as follows: For any pair r = (s, t ) ∈ Pαm , ∂ϕ
∗
r /∂αm = 0; For any pair r = (s, t ) ∈
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L\Pαm ,

∂ϕ∗r
∂αm

=

det
(
J rϕαm

H (ϕ∗αm )
)

det
(
Jϕαm

H (ϕ∗αm )
) =




[1−2πm (ϕ∗)]Y r
αm

αmπr (ϕ
∗)

1−πm (ϕ∗)−
∑

i ∈M̃αm \{m }

[2πi (ϕ∗) − 1]Y i
αm

1 −
∑

i ∈M̃αm

[2πi (ϕ∗) − 1]Y i
αm

if s =m;

[2πs (ϕ∗) − 1]Y r
αm

αmπr (ϕ
∗)

πm (ϕ∗) − [2πm (ϕ∗) − 1]Ym
αm

1 −
∑

i ∈M̃αm

[2πi (ϕ∗) − 1]Y i
αm

if s ,m.

(18)

where J rϕαm
H (ϕ∗αm ) is thematrix formed by replacing the column JϕrH (ϕ∗αm ) of thematrix Jϕαm

H (ϕ∗αm )

by−JαmH (ϕ∗αm ). Because πi (ϕ
∗)−[2πi (ϕ∗)−1]Y i

αm > 0 for any CP i , we can derive that 1−πm (ϕ∗)−∑
i ∈M̃αm \{m }

[2πi (ϕ∗)−1]Y i
αm > 0 and 1−

∑
i ∈M̃αm

[2πi (ϕ∗)−1]Y i
αm > 0. Combining with Equation

(18), for any two pairs l = (m,n),k = (i, j ) ∈ L satisfyingm , i , we have the inequalities

∂ϕ∗l
∂αm




≥ 0 if πm (ϕ∗) < 50%
≤ 0 if πm (ϕ∗) ≥ 50%,

∂ϕ∗k
∂αm




≤ 0 if πi (ϕ
∗) < 50%

≥ 0 if πi (ϕ
∗) ≥ 50%, .

Furthermore, by Equation (4), we can deduce that for any CP i ,m and s ∈ M,

∂πi (ϕ
∗,αm )

∂αm
= −

πi (ϕ
∗)πm (ϕ∗)

αm
,
∂πm (ϕ∗,αm )

∂αm
=
πm (ϕ∗)[1 − πm (ϕ∗)]

αm
,

∂πs (ϕ
∗)

∂ϕr
=




πs (ϕ
∗)πr (ϕ

∗)G ′(ϕ∗r )

G (ϕ∗r )
if r ∈ Ls ;

πs (ϕ
∗)πr (ϕ

∗)G ′(ϕ∗r )

G (ϕ∗r )
if r < Ls .

(19)

Combining with Equation (18), we can derive that for any CP i ,m,

∂πi
∂αm

=
∂πi (ϕ

∗,αm )

∂αm
+

∑
r ∈L

∂πi (ϕ
∗)

∂ϕr

∂ϕ∗r
∂αm

≤ 0,
∂πm
∂αm

=
∂πm (ϕ∗,αm )

∂αm
+

∑
r ∈L

∂πm (ϕ∗)

∂ϕr

∂ϕ∗r
∂αm

≥ 0.

Similarly, by Theorem 5.4.12 and 5.4.13 of [23], ϕ∗ is differentiable in um and ∂ϕ∗/∂um is the

unique solution of an affine variational inequality, denoted by AVI
(
D, JumF (ϕ

∗), JϕF (ϕ
∗)

)
, where

the set D was defined in Equation (16) and the individual items of the Jacobian matrix JϕF (ϕ
∗)

are shown in Equation (17). JumF (ϕ
∗) is the Jacobian matrix of F (ϕ∗) with respect to um , whose

individual items satisfy

−
∂2Wr (ϕ

∗)

∂ϕr ∂um
=



−πm (ϕ∗)[1 − πm (ϕ∗)]X < 0 if s =m

0 if s ,m,
∀ r = (s, t ) ∈ L.

We define a set of pairs Pum ≜ {r = (s, t ) : (λr > 0,ϕ∗r = 1) or (νr > 0,ϕ∗r = 0) or (νr = 0,ϕ∗r =
0,πs (ϕ∗) < 50%, s ,m) or (λr = 0,ϕ∗r = 1,πs (ϕ∗) ≥ 50%, s ,m) or (λr = 0,ϕ∗r = 1, s =m)}. We

define two vectors of levels ϕum ≜ (ϕr : r ∈ L\Pum ) and ϕ
∗
um ≜ (ϕ∗r : r ∈ L\Pum ). We define a

function H (ϕum ) ≜ (−∂Wr (ϕ)/∂ϕr )r ∈L\Pum and denote the Jacobian matrices of H (ϕ∗um ) with re-

spect toum , ϕr , andϕum by JumH (ϕ∗um ), JϕrH (ϕ∗um ), and JϕumH (ϕ∗um ), respectively. We denote sets

M̃um = {s : ∃t ∈ N such that (s, t ) ∈ L\Pum } and Ñ
s
um = {t : (s, t ) ∈ L\Pum }. For any pair r =

(s, t ), we denoteY r
um ≜ −πr (ϕ∗)G ′(ϕ∗r )/[(1+

∑
j ∈Ñ s

um
ys j )

(
1−πs (ϕ∗)

)
G ′′(ϕ∗r )] ∈ [0, 1). For any CP s ,
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we denote Y s
um ≜ (

∑
j ∈Ñ s

um
ys j )/(1+

∑
j ∈Ñ s

um
ys j ) ∈ [0, 1). By solving AVI

(
D, JumF (ϕ

∗), JϕF (ϕ
∗)

)
,

we can get its unique solution as follows: For any pair r = (s, t ) ∈ Pum , ∂ϕ
∗
r /∂um = 0; For any pair

r = (s, t ) ∈ L\Pum ,

∂ϕ∗r
∂um

=

det
(
J rϕum

H (ϕ∗um )
)

det
(
JϕumH (ϕ∗um )

) =



[1 − πm (ϕ∗)]Y r
um

umπr (ϕ
∗)

1 −
∑

i ∈M̃um \{m }
[2πi (ϕ∗) − 1]Y i

um

1 −
∑

i ∈M̃um
[2πi (ϕ∗) − 1]Y i

um
if s =m;

[1 − πm (ϕ∗)]Y r
um

umπr (ϕ
∗)

[2πs (ϕ∗) − 1]Ym
um

1 −
∑

i ∈M̃um
[2πi (ϕ∗) − 1]Y i

um
if s ,m.

(20)

where J rϕum
H (ϕ∗um ) is thematrix formed by replacing the column JϕrH (ϕ∗um ) of thematrix JϕumH (ϕ∗um )

by −JumH (ϕ∗um ). Because πi (ϕ
∗) − [2πi (ϕ∗) − 1]Y i

um > 0 for any CP i , we can derive that 1 −∑
i ∈M̃um \{m }

[2πi (ϕ∗) − 1]Y i
um > 0 and 1 −

∑
i ∈M̃um

[2πi (ϕ∗) − 1]Y i
um > 0. Combining with Equa-

tion (20), for any two pairs l = (m,n),k = (i, j ) ∈ L satisfyingm , i , we have the inequalities

∂ϕ∗l
∂um

≥ 0,
∂ϕ∗k
∂um




≤ 0 if πi (ϕ
∗) < 50%

≥ 0 if πi (ϕ
∗) ≥ 50%.

Furthermore, by Equation (19) and (20), we can derive that

∂πi
∂um

=
∑
r ∈L

∂πi (ϕ
∗)

∂ϕr

∂ϕ∗r
∂um

≤ 0,
∂πm
∂um

=
∑
r ∈L

∂πm (ϕ∗)

∂ϕr

∂ϕ∗r
∂um

≥ 0.

Similarly, by Theorem 5.4.12 and 5.4.13 of [23], ϕ∗ is differentiable in α0 and ∂ϕ∗/∂α0 is the

unique solution of an affine variational inequality, denoted by AVI
(
D, Jα0F (ϕ

∗), JϕF (ϕ
∗)

)
, where

the set D was defined in Equation (16) and the individual items of the Jacobian matrix JϕF (ϕ
∗)

are shown in Equation (17). Jα0F (ϕ
∗) is the Jacobian matrix of F (ϕ∗) with respect to α0, whose

individual items satisfy

−
∂2Wr (ϕ

∗)

∂ϕr ∂α0
= −us [2πs (ϕ∗) − 1]

πm (ϕ∗)

α0
πr (ϕ

∗)
G ′(ϕ∗r )

G (ϕ∗r )
X



> 0 if πs (ϕ
∗) < 50%

≤ 0 if πs (ϕ
∗) ≥ 50%,

∀ r = (s, t ) ∈ L. We define a set of pairs Pα0 ≜ {r = (s, t ) : (λr > 0,ϕ∗r = 1) or (νr >
0,ϕ∗r = 0) or (νr = 0,ϕ∗r = 0,πs (ϕ∗) < 50%) or (λr = 0,ϕ∗r = 1,πs (ϕ∗) ≥ 50%)}. We define

two vectors of levels ϕα0
≜ (ϕr : r ∈ L\Pα0 ) and ϕ

∗
α0

≜ (ϕ∗r : r ∈ L\Pα0 ). We define a

function H (ϕα0
) ≜ (−∂Wr (ϕ)/∂ϕr )r ∈L\Pα0

and denote the Jacobian matrices of H (ϕ∗α0
) with

respect to α0, ϕr , and ϕα0
by Jα0H (ϕ∗α0

), JϕrH (ϕ∗α0
), and Jϕα0

H (ϕ∗α0
), respectively. We denote

sets M̃α0 = {s : ∃t ∈ N such that (s, t ) ∈ L\Pα0 } and Ñ
s
α0
= {t : (s, t ) ∈ L\Pα0 }. For any

pair r = (s, t ), we denote yst ≜ −πr (ϕ∗)[G ′(ϕ∗r )]2/[
(
1 − πs (ϕ∗)

)
G ′′(ϕ∗r )G (ϕ∗r )] ≥ 0 and Y r

α0
≜

−πr (ϕ
∗)G ′(ϕ∗r )/[(1 +

∑
j ∈Ñ s

α0
ys j )

(
1 − πs (ϕ∗)

)
G ′′(ϕ∗r )] ∈ [0, 1). For any CP s , we denote Y s

α0
≜

(
∑

j ∈Ñ s
α0
ys j )/(1 +

∑
j ∈Ñ s

α0
ys j ) ∈ [0, 1). By solving AVI

(
D, Jα0F (ϕ

∗), JϕF (ϕ
∗)

)
, we can get its

unique solution as follows: For any pair r = (s, t ) ∈ Pα0 , ∂ϕ
∗
r /∂α0 = 0; For any pair r = (s, t ) ∈

L\Pα0 ,

∂ϕ∗r
∂α0
=

det
(
J rϕα0

H (ϕ∗α0
)
)

det
(
Jϕα0

H (ϕ∗α0
)
) = [2πs (ϕ∗) − 1]Y r

α0

α0πr (ϕ
∗)

π0 (ϕ
∗)

1 −
∑

i ∈M̃α0
[2πi (ϕ∗) − 1]Y i

α0

(21)
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where J rϕα0
H (ϕ∗α0

) is thematrix formed by replacing the column JϕrH (ϕ∗α0
) of thematrix Jϕα0

H (ϕ∗α0
)

by −Jα0H (ϕ∗α0
). Because πi (ϕ

∗) − [2πi (ϕ∗) − 1]Y i
α0
> 0 for any CP i , we can derive that 1 −∑

i ∈M̃α0
[2πi (ϕ∗) − 1]Y i

α0
> 0. Combining with Equation (21), for any pair l = (m,n) ∈ L, we have

the inequalities

∂ϕ∗l
∂α0




≤ 0 if πm (ϕ∗) < 50%
≥ 0 if πm (ϕ∗) ≥ 50%,

Furthermore, by Equation (4), (19) and (21), we can derive that for any CPm ∈ M,

∂πm
∂α0

=
∂πm (ϕ∗,α0)

∂α0
+

∑
r ∈L

∂πm (ϕ∗)

∂ϕr

∂ϕ∗r
∂α0
= −

πm (ϕ∗)π0 (ϕ
∗)

α0
+

∑
r ∈L

∂πm (ϕ∗)

∂ϕr

∂ϕ∗r
∂α0
≤ 0. □
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